Introduction to Scientific Computation

fretmoallimgss $=\operatorname{cell}(1,1)$;

Jfor findx1 = 1:1;
fnamefr1 = flistfrmovie1\{findx1\};
datA $=$ zeros(ysize, xsize, nframes);

]for $k=1: n f r a m e s ;$
if $\bmod (k, 10)==0$
k;
end
dat $A(:,:, k)=$ imread(fnamefr1, 't

Halil Bayraktar
Lecture 8 - Function sorting

Today's lecture

Functions review
Data sorting (bubble and quick sorting)

How to write a function in Matlab

function [output value 1, output value 2, ...]
=name(input1, input2,input3...])
body of the function
end

```
function [result]=name(x,y,z,......)
% function to compute the factorial of a number
body of the function
```

end

Any matlab function consists of

1. Each function in the matlab starts with a word of "function", please do not use this word any other place in your code.
2. Find a name for your function
(note: The name should be the same as the name of the M-file in which this function is stored)
3. The input values are shown in parentheses. They are separated by commas if there is more than one input values.
4. Output values are shown in square brackets. If there are more than one inputs, they are separated by comma.

Solution 1

```
function [result]=factfun(n)
```

 \% function to compute the factorial of a number
 result=1;
 for \(i=1: n\) :
 result=result*i;
 end
 format short
 \%result=fac;
 fprintf('\%i factorial equals to \%i \(\backslash n ', n, r e s u l t)\)
 end

Solution 2

```
function [result]=factfun(n)
\% function to compute the factorial of a number
    result=prod(1:n)
        format short
            fprintf('\%i factorial equals to \%i \(\left.\backslash n^{\prime}, n, r e s u l t\right)\)
end
```


Anonymous Functions

Anonymous functions are unnamed function objects defined in your program. to write a a function we use a symbol of @ @(input variable) expression
quad function tells us that it evaluates the integration of a function between two values.

$$
\begin{gathered}
\mathrm{a}=\underset{\text { quad }(\mathrm{a}, 0,3)}{@(x) \sin (x)}{ }^{*} \cos (x) ; \\
\text {; }
\end{gathered}
$$

$$
\text { Ans }=0.01
$$

$$
\begin{aligned}
& I=\frac{2}{2} \int \sin x \cos x d x \\
& I=\frac{1}{2} \int 2 \sin x \cos x d x \\
& I=\frac{1}{2} \int \sin 2 x d x \\
& I=-\frac{1}{2} \frac{\cos 2 x}{2} \\
& I=\frac{-\cos 2 x}{4}+C \\
& \hline
\end{aligned}
$$

Anonymous Functions

$$
\begin{gathered}
\text { sqr }=@(x) x .{ }^{\wedge} 2 ; \\
a=\operatorname{sqr}(5)
\end{gathered}
$$

Example 2: How to sort numbers

When dealing with large data sets, we often sort them to assess the data. MATLAB itself has a very powerful function called "sort". However, there are different ways of sorting numbers.
a. Bubble sorting
b. Quick sorting etc.

Here is the problem:
Write a function to sort the following numbers from smallest to largest value: 732

Bubble sorting
$X(1)>X(2)>X(3)$
Return $2>3>7$
Step 1372
Step $23 \quad 27$
Step $323 \quad 7$

Bubble sorting

The bubble sort is a simple sorting algorithm. Although it is very inefficient compared to quick sorting, it is very easy to understand.
\boxminus function $[x]=$ bubblesort2(x)
tic
$\mathrm{n}=$ length (x); \%n=3
for $\mathrm{j}=\mathrm{n}-1:-1: 1$; $\% \mathrm{j}=2,1$
for sortnum $=1: j$; \%j 1,2 then 1
$7 \quad 3 \quad 2$ if $x($ sortnum $)>x(s o r t n u m+1)$: temporary $=x($ sortnum +1$)$; $x($ sortnum +1$)=x($ sortnum $)$

372 $x($ sortnum $)=$ temporary;
end $\operatorname{disp}(x)$
end
end
327
$23 \quad 7$
toc
end

Bubble sorting

step 1
step 2

2. Quick Sorting

This sorting technique is faster and more useful than bubble sorting. It is also known as divide and conquer algorithm.

The following steps are applied for quick sorting:

1. Pick an element and usually called a "pivot number" from an array.
2. Next step is "Partitioning section" means that reorder the array so that all elements with values less than the pivot come before the pivot number, while all elements with values greater than the pivot number come after it. If they are equal, the values can go either way.
3. After this partitioning, the pivot is now in its final position.
4. Then successively apply all the steps shown above to the sub-array of elements with smaller values and separately to the sub-array of elements with greater values.

Quick Sorting


```
12 6
All numbers<19 All numbers>19
```

$\begin{array}{lllll}12 & 6 & 15 & 1417 & \text { Choose another pivot tuumber }\end{array}$
242232 choose another pivot tumber

12	6	15	14	17	$12<15$
$17>15$					

12	6	15	14	17	$\begin{array}{c}6<15 \\ 14<15\end{array}$ Both numbers are smaller
than 15					

$14<15 \quad$ than 15
$242232 \begin{aligned} & 32>24 \\ & 22<24\end{aligned}$
222432 SORTED
$\begin{array}{llll}12 & 6 & 141517\end{array}$
$\begin{array}{lllll}12 & 6 & 14 & 6<12 \\ 14>12\end{array}$
$12614 \quad$ Splitting numbers
61214 SORTED

Result:

6	12	14	15	17	19	22

$126 \quad 14 \quad$ Splitting numbers
61214 SORTED

