Lecture 11
Image/video and data analysis
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Optical tools and probes are needed to record signals
at spatiotemporal resolution

>
Ahrens, M. B., Orger, M. B., Robson, D. N., Li, J. M. and Keller,
Tamily A. Weissman™' and Y. Albert Pan P.J. etal
GCaMP Fluorescent Reporters of Neuronal signaling
https://www.youtube.com/watch?v=FGvp6cdKb3c
Static Imaging of cell function s Dynamic Imaging of cellular function
Low spatiotemporal resolution High spatiotemporal resolution 9
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Evolution of microscopes and technology for biological
systems
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There is a strong interest for large

field of view, functional imaging
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As biologists demand new methods, novel tools will be
invented.



Deep diagnostic with image processing
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Fig. 1| Valuable information is hidden in label-free images. High-throughput cell-based diagnostics
allow samples to be analysed at single-cell resolution and across multiple channels. a, Conventional cell-
based diagnostics often rely on specific biomarkers to identify disease status. The readouts are mainly
intensity signals of the labelled targets. For multiplexed assays that involve several biological targets,
such intensity-based analysis typically requires manual pairwise comparisons for the relevant markers.
b, Recent research?”"* indicates that label-free channels of images (such as brightfield and darkfield)
can contain equivalent information, potentially replacing fluorescent markers. To accomplish this,
however, it requires sophisticated extraction of information from images. ¢, In classical image processing
pipelines, designed features (such as shape, intensity, texture) are helpful inputs for a machine classifier
to learn the characteristic pattern of the phenotypes. However, feature engineering requires image
analysis expertise and is limited in its maximum accuracy. d, In contrast, deep neural networks are
generally more accurate and also more flexible: they identify features on their own by learning relevant
patterns from a large number of examples (training dataset, not shown). One caveat is the loss of direct
interpretability of the discovered features due to the hierarchy of abstract representation, as shown here
on three hidden layers of a simple neural network.

hallmarks of disease. Screening cytology,
such as Pap smears for abnormal cervical
cells, enables life-saving early discovery of

disease in the absence of clinical symptoms.

As we will discuss, bringing machine
learning to the analysis of microscopy/
histology images offers tremendous
potential for cell diagnostics with a greater
ability to discern among patient subtypes.
For cells in suspension, such as in blood
samples, flow-based systems are more
favourable Althoush flow cvtometers are

at a throughput of several hundreds to
thousands of objects per second. Signals
from unwanted events, such as debris, can
be more easily detected and ignored than
in conventional flow cytometry. Currently,
few cell-based diagnostics are in clinical use
that rely on imaging flow cytometry, but
as we will discuss, this is likely to change:
the spatial information (that is, images)
that imaging flow cytometry brings may
soon reduce or eliminate the need for the
snecific hinmarkers that are reanired for

This design can be highly modular and
customizable, thus enabling parallelization
and microcontrol of multiple functions in

a single compact device, such as mixing,
particle manipulation, imaging, tracking
and other automated assays’. It can be used
to study living cells together with their
associated extracellular materials in the
supernatant™, which is much less feasible by
microscopy or flow cytometry.

Trends in cell image analysis

A dramatic revolution in computer vision
has suddenly made new technology available
for image analysis that, when combined
with the image-capturing devices just
described, could yield a crop of novel

cell diagnostics.

It is first helpful to understand existing
approaches for analysing cell images for
diagnostic purposes. Of course, the most
widespread is the visual assessment of
phenotypes by pathologists. This raises
challenges: trained experts are expensive
and cannot analyse enormous datasets
efficiently, as in whole-slide scans of a
tissue biopsy, for example. Furthermore,
discrepancies among pathologists’ judgment
are well-documented”, and it is possible that
patterns exist in cell morphology that the
human visual system is simply not equipped
to perceive’.

Image analysis software can overcome
many of these challenges. In classical image
processing (Fig. 1c) a researcher designs
algorithms to identify each cell, its borders
and any relevant subcellular compartments
(for example, nuclei or other organelles) in
the images so that many different kinds of
measurements of these identified regions of
the image can then be taken. These so-called
morphological features include pixel
intensities, size, shapes, textures, correlations
and relationships among neighbour cells and
subcellular components; these can be used
directly as a diagnostic feature. Features can
also be combined to detect more complex
phenotypes that manifest in multiple
features simultaneously using machine
learnino. where the aloorithm learns to

Nature, Carpenter et. al.



Data volume: high-content screening studies generate
bid data sets
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Imaging cells at different scales
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Custom programs for analysis of biological systems

MATLAB

Programming

_‘ MathWorks®

Where do we use custom programming to determine the properties/dynamics
of biological systems

Image/video processing
Genome analysis
Microarray analysis
Proteomics analysis
Advance graphics

arooON-~



Example: Understanding satellite dynamics leads us to develop new computer
algorithms.

b
Raw data  Afterimage processing |- . "
SCIENTIFIC ’ ; AT

REPORTS

-Nocodazole
n=121

@

o

g 02 ——

g M
o

o

0.4

Centrosomal and ciliary targeting
of CCDC66 requires cooperative
action of centriolar satellites,

.w»  microtubules and molecular motors

eniz Conkar’, Halil Bayral

+Nocodazole
n=92

0.2 0.4 0.6 0.8 1.0
Persistence ratio (D/T)

Challenges on the project:

1. Noisy images/videos

2. Moving objects

3. New parameters are needed to determine satellite dynamics
4. Advance graphics for data visualization

Our solutions was;

Noise free images

Build a custom tracking algorithms for moving objects (Satellites)
Compute new parameters : persistence, speed, distance, number etc.
Custom solutions for data visualization

B wn =

Result: Analysis demonstrated that satellites can be distinguished based on their
persistence ration and around centrosome they move both diffusively and
persistently 8



A cutoff intensity filter is used to determine the
locations of satellites in images




Although we use high-end and super expensive microscopes, they are not perfect.
* Low signal to noise ratio

« Some issues: Blur images, pixel noise, focus loss, diffraction issues etc.

» Solution: Post-processing of image/videos
Technical term: Bandpass (low-pass) filter was used to remove noise.
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Raw data:Pre-processing Post-processing Conkar et al. scientific

reports 2019
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Static and dynamic information with high
spatial and temporal resolution

Dynamic at time proint t Other dynamic properties
-Average velocity _Size

-Instant speed -Shape

-Persistence -Gene expression levels

-Direct distance
-Total distance

How these properties/features change as a function of

different perturbation?

How much they different across different cell types?
How do they affect cell fate?

Are they different in normal and cancerous cells?



Some available function for image analysis

imread Read an image in a variety of formats

imfinfo Gather information about an image file

imwrite Write data to an image file

image Display image from array

imShow Display an image, optimizing figure, axes, and image object

prop- erties, and taking an array or a flename as an input

rgb2gray

Rgb to gray scale




Reading tif file name

Spfile=dir(".tif")

5x1 struct with 6 fields

Fields

0 NO VT A WN R

name

'Mark_and_Find 001_Position007_t000_R...
‘cellimage.tif'

'examplel.tif'

'example?2.tif'

'example3.tif’

:Ir| folder date

'/Users/...
'/Users/...
'/Users/...
'/Users/...
'/Users/...

'23-Jan-...
'15-May...
'13-May...
'13-May...
'13-May...

] bytes
5532654
5322953

210949
185639
193645

isdir

Hidatenum

07.3781e+05
07.3793e+05
07.3792e+05
07.3792e+05
07.3792e+05



Each image comes with a metadata that demonstrates camera
software, image properteis, where and how the image was
generated.

This is useful when analyzing images and videos

Spfile(1) .name e vatu

[l Filename '/Users/halilbayraktar/Documents/Teaching/Scientific Computation...
J|FileModDate '23-Jan-2020 16:04:24'

a = H FileSize 5532654
J|Format "tif'

H FormatVersion []

imfinfo(Spfile(l).name)

H BitDepth 16

] ColorType 'grayscale'

jj FormatSignature [73,73,42,0]
11l ByteOrder 'little-endian’

H NewSubFileType 0
H BitsPerSample 16

] Compression 'Uncompressed’
J/Photometricinte... 'BlackisZero'
H StripOffsets 1x360 double
HSamplesPerPixel 1

H RowsPerStrip 4

H StripByteCounts  1x360 double
H XResolution 1.5422e+04
H YResolution 1.5422e+04
I|ResolutionUnit ‘Centimeter’
H Colormap []

Il PlanarConfigura... 'Chunky'

H TileWidth []

H TileLength []

H TileOffsets []

H TileByteCounts []

H Orientation 1

HFillorder 1

H GrayResponseUnit 0.0100
HMaxSamplevalue 65535
HMinsamplevalue 0
H Thresholding 1



Size of an image

xsize = a(l).wWidth;

Field « Value
L L [ Filename ‘/Users/halilbayraktar/Documents/Teaching/Scientific Computation...
_— [ ) [ FileModDate '23-Jan-2020 16:04:24'
I Z - ® I HFileSize 5532654
’ I/ Format 'tift
£ FormatVersion []
H width 1920
H Height 1440
1 BitDepth 16
[/ ColorType 'grayscale'
1 FormatSignature  [73,73,42,0]
[1ByteOrder little-endian"
L ] NewSubFileType 0
I BitsPerSample 16
IX [|Compression 'Uncompressed’
l|[Photometricinte... 'BlacklsZero'
t StripOffsets 1x360 double
] SamplesPerPixel 1
1 RowsPerStrip 4
H StripByteCounts ~ 1x360 double
1] XResolution 1.5422e+04
1] YResolution 1.5422e+04
[/ ResolutionUnit 'Centimeter"
i Colormap
[{PlanarConfigura... ‘Chunky'
5 TileWidth ]
] TileLength []
t TileOffsets []
1 TileByteCounts []
H Orientation 1
t FillOrder 1
1| GrayResponseUnit 0.0100
] MaxSampleValue 65535
] MinSamplevalue 0
1 Thresholdin 1




Read images and show it in the figure

datB = imread(Spfile(1l).name,
‘tif', 1);

figure(1l)
ax=imshow(datB, [min(min(datB)) max(max(datB))/3])




Black-and-White Images

It is a 1 bit image. The pixel can carry either O (black) or 1
(white).

That is also called binary image.

No gray levels from black to white is present.
Binary Image RGB Image







Gray Scale Images:

It is an image where the intensity values are scaled between black and white.
If only two color is available for pixels. It is a 1-bit picture- Pixels are 0 or 1

If 256 colors it is 8 bit (1byte) picture from
0 to 255. 8 bit or 1 Byte image has a 256 shades of gray if a gray scale image used.

00000000 = 0 black

You can represent any number
from O to 255 using 8 bits.

00111110 = 62 gray tone

255 Whlte

11111111




Numbers represents the
256 shades of gray
intensity values from 0 up

OaoMUE

6000x400

to 255.

1 byte = 8 bit image

28 = 256 different levels
10 by 10 pixel — upper corner of the image

85 78 75 79 82 81 80 81 81
74 65 57 56 55 52 49 50 71
73 63 56 56 58 57 58 61 66
64 56 52 55 59 61 63 66 61
68 60 54 56 57 55 53 54 53
73 64 57 56 57 54 53 54 51
66 55 45 43 45 47 50 54 51
80 66 52 47 47 49 54 60 47
83 73 59 49 48 53 58 60 55
74 67 61 58 53 48 49 54 54

89
74
62
54
47
49
54
95
52
52



Finding brightest cell in the image




Finding all cells in the image




A cutoff intensity filter is used to determine the
locations of satellites in images




How many spots/protein complex are present?

A~ ON-

67
81
109
132
38

Threshold
filter
244 .552 231 255
246.444 232 255
245.514 230 255
246.311 231 255
245.289 231 255

Size filter
(pixels)

Intensity > threshold

56.642
133.458
188.591
82.823
187.224

88.736
99.893
105.818
141.115
134.800



AL wWN-

-Size (5 to Infinity)

-Show outline

-Set measurements
Many information can be

extracted

Area Mean Min

67 244 552
81 246.444
109 245.514
132 246.311
38 245.289

231
232
230
231
231

Max

255
255
255
255
255

Area = Number of Pixels

Diameter = Number of Pixels

XM

56.642
133.458
188.591
82.823
187.224

YM Diameter Perimeter

88.736
99.893
105.818
141.115
134.800

12
13.9
18
25

9

33

38

47
60
22



Why we transform images?
To extract and interpret the information in the data

Many protein complexes
What information we can get from these segmentation?

Size

Intensity

Shape

Diameter

Total number in different cell lines
Extract dynamic information

ook wh =




