Introduction to Scientific Computation

Halil Bayraktar Lecture 7-data normalization, missing values and functions in programming

How to clean missing values in the data?

_______ mailusdanea w [________ mailus w [_______ mailus w [_______ arai

🔢 27130x34 <u>table</u>

	1	2	3	4	5	6	
	Gene	ARNA	TRNA	ARNA1	TRNA1	ARNA2	
1	"LOC1024	0	1.0045	4.0185	0.9162	2.9799	۸
2	"ZBTB42"	27.8394	37.1676	55.2547	30.2348	42.7112	
3	"FCAMR"	1.1136	0	1.0046	0	0.9933	
4	"ZNF503	41.2024	35.1586	40.1853	16.4917	35.7582	
5	"NFU1"	111.3578	123.5573	118.5465	133.7663	91.3821	
6	"ELSPBP1"	0	0	0	0	0	
7	"ZRANB3"	190.4218	183.8291	141.6531	169. <mark>4</mark> 984	155.9455	
8	"MECR"	259.4637	291.3139	188.8708	237.2977	289.0455	
9	"LOC1057	0	0	0	0	0	
10	"LINC003	2.2272	2.0091	3.0139	4.5810	6.9530	
11	"AARSD1"	1.1136	0	0	0	0	
12	"DEXI"	485.5200	435.9663	492.2695	308.7619	511.5410	
13	"DCHS1"	1.1559e+03	1.0035e+03	1.2116e+03	1.3138e+03	1.3479e+03	
14	"PSMD2"	1.2550e+03	1.8232e+03	1.3914e+03	1.4861e+03	1.5545e+03	
15	"GABRR1"	3.3407	4.0181	2.0093	1.8324	5.9597	
16	"PKNOX2"	780.6181	676.0491	640.9550	244.6274	522.4672	
17	"TIPARP"	309.5747	294.3275	372.7184	721.0553	238.3881	
18	"ADAM20"	113.5849	91.4123	74.3427	89.7883	100.3216	
19	"LOC2847	0	0	0	0	0	
20	"MIR4715"	0	0	0	0	0	
21	"PURB"	1.3274e+03	1.6374e+03	1.3000e+03	1.2341e+03	1.2416e+03	¥
	<					>	

Solution 1: We can use the rmmissing function that removes all rows with NaN

27130x34 table

		30	31	32	33	34		-1 -	, <u>, , , , , , , , , , , , , , , , , , </u>	L		_
		TRNA13	TRNA14	Young_vs_Old	Old_vs_AD	Young_vs_AD			128x33 double			
	16	2.5888	0.9477	NaN	0.6577	0.9316	^		1	2	3	
2	74	28.4767	37.9071	0.2173	0.9606	0.1592		1	27.8394	37.1676	55.2547	
3	0	0	0	NaN	NaN	NaN	_	2	41.2024	35.1586	40.1853	
Ļ	79	11.2181	36.9594	0.7778	0.4949	0.2141		3	111.3578	123,5573	118,5465	
5)5	134.6172	93.8201	0.2529	0.5152	0.0180		4	190 4218	183 8291	141 6531	<u> </u>
5	0	0	0	NaN	NaN	NaN		5	259 4637	291 3139	188 8708	
,	97	217.4585	149.7331	0.8257	0.0248	0.0035		6	485 5200	435 9663	492 2695	
3	34	225.2249	373.3850	0.8962	0.1639	0.0661		7	1 1559e+03	1 0035e+03	1 2116e+03	1
)	0	0	0	NaN	NaN	NaN		6	1.15556+03	1.000000100	1 301/0±03	1
0	0	0	4.7384	NaN	0.0820	0.4243		0	790 6191	676 0401	640.0550	1.
1	0	0	0.9477	NaN	NaN	NaN		9	200.5747	204 2275	272 7404	-
12	15	356.3903	397.0770	0.6785	0.7987	0.3801		10	309.5747	294.3210	312.1104	
13)3	1.2452e+03	1.4860e+03	0.8661	0.9385	0.7631		11	113.5649	91.4123	14.3421	-
4)3	1.6439e+03	1.5068e+03	0.4814	0.2136	0.0121	_	12	1.32/4e+03	1.63/4e+03	1.3000e+03	1.
15	0	1.7259	1.8954	NaN	0.3701	0.0193	-	13	1.3285e+03	1.1422e+03	977.5067	1.
6)4	220.0473	470.9958	0.3814	0.3493	0.9747	_	14	150.3330	145.6569	190.8800	
7	78	739.5315	273.8789	0.3138	0.7563	0.0845	-	15	66.8147	36.1631	46.2131	
8	97	43.1465	71.0758	0.1019	0.7264	0.1319	-	16	153.6738	171.7747	161.7457	
9	0	0	0	NaN	NaN	NaN	-	17	146.9923	150.6796	110.5095	
20	0	0	1.8954	NaN	NaN	NaN	-	18	197.1033	381.7216	150.6948	
21)3	1.1926e+03	981.7941	0.5825	0.8988	0.3862	-	19	20.0444	12.0544	21.0973	
22)3	1.4256e+03	1.1903e+03	0.3570	0.9632	0.2343	-	20	1.4610e+03	747.3707	816.7656	
23	60	73.3491	60.6514	0.6285	0.2586	0.0371	-	21	228.2835	198.8971	337.5563	
24	24	46.5983	49.2792	0.8579	0.3470	0.1649	-					

	128x33 double							
	1	2	3	4	5	6		
1	27.8394	37.1676	55.2547	30.2348	42.7112	32.2643		
2	41.2024	35.1586	40.1853	16.4917	35.7582	32.2643		
3	111.3578	123.5573	118.5465	133.7663	91.3821	86.7800		
4	190.4218	183.8291	141.6531	169.4984	155.9455	92.3428		
5	259.4637	291.3139	188.8708	237.2977	289.0455	189.1358		
6	485.5200	435.9663	492.2695	308.7619	511.5410	493.9782		
7	1.1559e+03	1.0035e+03	1.2116e+03	1.3138e+03	1.3479e+03	1.4652e+03	1	
8	1.2550e+03	1.8232e+03	1.3914e+03	1.4861e+03	1.5545e+03	1.3206e+03	1	
9	780.6181	676.0491	640.9550	244.6274	522.4672	406.0857		
10	309.5747	294.3275	372.7184	721.0553	238.3881	354.9078		
11	113.5849	91.4123	74.3427	89.7883	100.3216	160.2091		
12	1.3274e+03	1.6374e+03	1.3000e+03	1.2341e+03	1.2416e+03	1.4953e+03	1	
13	1.3285e+03	1.1422e+03	977.5067	1.1333e+03	1.3072e+03	1.1738e+03		
14	150.3330	145.6569	190.8800	127.3528	113.2343	140.1830		
15	66.8147	36.1631	46.2131	39.3969	31.7851	52.2905		
16	153.6738	171.7747	161.7457	154.8391	164.8851	141.2956		
17	146.9923	150.6796	110.5095	95.2856	85.4224	74.5418		
18	197.1033	381.7216	150.6948	362.8182	73.5030	70.0915		
19	20.0444	12.0544	21.0973	6.4135	20.8590	66.7538		
20	1.4610e+03	747.3707	816.7656	209.8115	345.6627	269.2404		
21	228.2835	198.8971	337.5563	285.8567	128.1336	133.5076		

Solution 2:

Can we write our own code that removes the data with zeros?

How to find Nan values in the data and remove these arrays?

Data normalization

- 1. Divide by the max value or
- 2. Find largest of smallest value and use the following formula, you can scale the values between 0 and 1

Data-min/max-min

$$x' = (x - x_{min})/(x_{max} - x_{min})$$

	🛨 10x5 double							
	1	2	3	4	5			
1	87	66	74	20	17			
2	15	46	81	81	51			
3	42	42	61	51	80			
4	33	68	12	37	84			
5	49	76	10	42	67			
6	37	76	99	53	43			
7	97	97	28	49	90			
8	21	14	84	73	32			
9	29	48	42	71	16			
10	91	10	51	10	76			
11								
						1		

%%
data1 <u>=</u> randi([10,100],10,5)
%%
mad=max(max(data1))
mid=min(min(data1))
ndata=(data1-mid)/(mad-mid)

	10x5 double							
	1	2	3	4	5	6		
1	0.8652	0.6292	0.7191	0.1124	0.0787			
2	0.0562	0.4045	0.7978	0.7978	0.4607			
3	0.3596	0.3596	0.5730	0.4607	0.7865			
4	0.2584	0.6517	0.0225	0.3034	0.8315			
5	0.4382	0.7416	0	0.3596	0.6404			
6	0.3034	0.7416	1	0.4831	0.3708			
7	0.9775	0.9775	0.2022	0.4382	0.8989			
8	0.1236	0.0449	0.8315	0.7079	0.2472			
9	0.2135	0.4270	0.3596	0.6854	0.0674			
10	0.9101	0	0.4607	0	0.7416			
11								
12								

Log scaling

It is used to scae the values and compress a wide range to a narrow range of values.

Subgrouping the data

% mean values of each gene for young, old, and AD samples

allmeansdata=subyoungmean';

allmeansdata(:,2)=suboldmean';

allmeansdata(:,3)=subADmean';

% young old diff

allmeansdata(:, 4)= allmeansdata (:, 1)- allmeansdata (:, 2);

% young alz diff

allmeansdata(:, 5)= allmeansdata (:, 1)- allmeansdata (:, 3);

% old alzhemier diff

allmeansdata(:, 6)= allmeansdata (:, 2)- allmeansdata (:,3);

12	8x11 double					
	1	2	3	4	5	6
1	0.4866	0.6443	0.6451	-0.1577	-0.1585	-8.7756e-04
2	0.5456	0.6937	0.6966	-0.1481	-0.1510	-0.0029
3	0.2530	0.4804	0.4837	-0.2274	-0.2307	-0.0033
4	0.6238	0.7190	0.7131	-0.0952	-0.0893	0.0059
5	0.6202	0.4621	0.4699	0.1581	0.1504	-0.0077
6	0.7676	0.6858	0.6771	0.0818	0.0905	0.0087
7	0.8241	0.6859	0.6761	0.1382	0.1480	0.0098
8	0.4072	0.5010	0.4909	-0.0938	-0.0837	0.0101
9	0.3752	0.4150	0.4031	-0.0398	-0.0279	0.0119
10	0.5472	0.6547	0.6675	-0.1075	-0.1202	-0.0127
11	0.7443	0.6082	0.6215	0.1361	0.1229	-0.0132
12	0.6721	0.5565	0.5408	0.1157	0.1314	0.0157
13	0.6649	0.5888	0.6067	0.0761	0.0581	-0.0180
14	0.4952	0.3110	0.3305	0.1843	0.1647	-0.0196
15	0.8474	0.7785	0.8004	0.0689	0.0470	-0.0219
16	0.4533	0.6328	0.6089	-0.1795	-0.1556	0.0239
17	0.7804	0.6416	0.6657	0.1388	0.1147	-0.0241
18	0.5196	0.5083	0.5332	0.0113	-0.0136	-0.0250
19	0.3145	0.3653	0.3352	-0.0508	-0.0207	0.0301
20	0.5720	0.5746	0.6052	-0.0026	-0.0332	-0.0306
21	0.6814	0.6760	0.6448	0.0054	0.0367	0.0313

~~

A 7004

0 7070

0 0407

A A074

0.0500

0.0005

IF statement

If statement is used to choose whether or not a statement,

or group of statements, is executed. if statement is written as,

If logic expression or relational expression arguments elseif logic or relational expression Arguments

end end

Switch Statement

A switch statement can often be used in place of a nested if-else or an if statement with many elseif clauses.

Switch statements are used when an expression is tested to see whether it is equal to one of several possible values.

switch switch_expression case caseexp1 action1 case caseexp2 action2 case caseexp3 action3 % etc: there can be many of these otherwise actionn end

Numeric values as a case

switch month case {1,3,5,7,8,10,12} % group different case varibles if return same results days=31; fprintf('days: %i',days) case {4,6,9,11} days=30 fprintf('days: %i',days) case 2 days=28 fprintf('days: %i',days) otherwise disp('entered valuer is not present, please select a number between 1 and 12') end

String values as a case

%% enter a string % if and case statements food=input('enter a food: ')

month=input('select a month:')

switch food

case {'pizza','burger','chips'}
disp('food is not healthy')
case {'soup','vegetable','rice'}
disp('food is healthy')
if food=='soup'
disp('soup has high protein nutrients')

else

disp('it has high carbohydrate nutrient') end otherwise disp('i do not know') end Error in matlab.internal.editor.evaluateCode
enter a food: 'pizza'
food =
 'pizza'
food is not healthy
fx >>

Create a menu tab in the matlab

%% menu in matlab	
degree input ('enter a angle in degrees: ')	
choice=menu('function','sin','cos','tan','cot')	
switch choice	
case {1}	
result=sind(degree)	
case {2}	
result=cosd(degree)	
case {3}	
result=tand(degree)	
case {4}	
result=cotd(degree)	
end	
fprintf('%i',result)	

result =

0.5000

fx 5.000000e-01>>

Is Functions in Matlab

%% is functions In Matlab	
isnumeric(56)	
%%	
isletter('334678888 Maslak')	
%%	
y <mark>=</mark> []	
x <mark>=</mark> [1,2,3]	
isempty(y)	
x <mark>=</mark> 45	
isstring(x)	
%%	
isnumeric(34)	
%%	
a <mark>=[1,2]</mark>	
isempty(a)	
a=["maslak"]	
isstring(a)	
isletter('a')	
a <mark>≡</mark> [1,2]	
isempty(a)	
isreal(0)	
%%	
a=[1,2,3,NaN]	
find(isnan(a))	

How to write a function in Matlab

function [output value 1, output value 2, ...] =name(input1, input2,input3...])

body of the function

end

```
function [result]=name(x,y,z,....)
% function to compute the factorial of a number
body of the function
end
```

Any matlab function consists of

1. Each function in the matlab starts with a word of "function", please do not use this word any other place in your code.

2. Find a name for your function (note: The name should be the same as the name of the M-file in which this function is stored)

3. The input values are shown in parentheses. They are separated by commas if there is more than one input values.

4. Output values are shown in square brackets. If there are more than one inputs, they are separated by comma.

Example: Function to compute the factorial of a number function [fac]=factfun(n) % function to compute factorial of a number

fac=1; for i=1:n; fac=fac*i;

end format short %result=fac; fprintf('%i factorial equals to %i \n',n,fac) **Example: Function to compute the factorial of a number**

```
function [fac]=factfun2(n)
% function to compute factorial of a number
if n==0
   fac=1
    fprintf('%i factorial equals to %i \n',n,fac)
   return
else
   fac=prod(1:n)
end
  format short
   %result=fac;
   fprintf('%i factorial equals to %i \n',n,fac)
   fprintf('it works')
end
```

Anonymous Functions

Anonymous functions are functions define d in your program.

it does not need other file to save it. We use a symbol of @

@(input variable) expression quad function in matlab evaluates the integration of a function between two values.

$$I = \frac{2}{2} \int \sin x \cos x dx$$

$$I = \frac{1}{2} \int 2 \sin x \cos x dx$$

$$I = \frac{1}{2} \int 2 \sin x \cos x dx$$

$$I = \frac{1}{2} \int \sin x \cos x dx$$

$$I = \frac{1}{2} \int \sin 2x dx$$

$$I = -\frac{1}{2} \frac{\cos 2x}{2}$$

$$I = -\frac{1}{2} \frac{\cos 2x}{2} + C$$

Examples of Anonymous Functions

$$sqr = @(x) x.^2;$$

 $a = sqr(5)$

function1 =

function_handle with value:

 $@(x,y,z)x.^{2+y.^{3+z.^{4}}}$

ans =