### Quantitative Methods for Biological Systems Lecture 02







E coli has a machinery inside to produce 4x10<sup>6</sup> proteins in less than 30 minutes



How you model the shape of the e.coli?







Nanometers

Small

Micrometers

**Assemblies** 



Millimeters



Meters

![](_page_2_Figure_9.jpeg)

| Table 1.1 Rules of thumb for biological estimates |                             | Quantity of interest                                                                                                                                                                                                                                                                       | Symbol                                                                                                                                             | Rule of thumb                                                                                                                                                                                                                                  |
|---------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                   | E. coli                     | Cell volume<br>Cell mass<br>Cell cycle time<br>Cell surface area<br>Genome length<br>Swimming speed                                                                                                                                                                                        | V <sub>E.</sub> coli<br>m <sub>E.</sub> coli<br>t <sub>E.</sub> coli<br>A <sub>E.</sub> coli<br>N <sup>E.</sup> coli<br>bp<br>V <sub>E.</sub> coli | $\approx 1 \ \mu m^3$<br>$\approx 1 \ pg$<br>$\approx 3000 \ s$<br>$\approx 6 \ \mu m^2$<br>$\approx 5 \ \times \ 10^6 \ bp$<br>$\approx 20 \ \mu m/s$                                                                                         |
|                                                   | Yeast                       | Volume of cell<br>Mass of cell<br>Diameter of cell<br>Cell cycle time<br>Genome length                                                                                                                                                                                                     | Vyeast<br>Myeast<br>dyeast<br>tyeast<br>Nyeast<br>Nyeast                                                                                           | ≈60 μm <sup>3</sup><br>≈60 pg<br>≈5 μm<br>≈200 min<br>≈10 <sup>7</sup> bp                                                                                                                                                                      |
|                                                   | Organelles                  | Diameter of nucleus<br>Length of mitochondrion<br>Diameter of transport vesicles                                                                                                                                                                                                           | d <sub>nucleus</sub><br>I <sub>mito</sub><br>d <sub>vesicle</sub>                                                                                  | ≈5μm<br>≈2μm<br>≈50nm                                                                                                                                                                                                                          |
|                                                   | Water                       | Volume of molecule<br>Density of water<br>Viscosity of water<br>Hydrophobic embedding energy                                                                                                                                                                                               | V <sub>H2</sub> Ο<br>ρ<br>η<br>~Ε.                                                                                                                 | $\approx 10^{-2} \text{ nm}^3$<br>1 g/cm <sup>3</sup><br>$\approx 1 \text{ centipoise}$<br>(10 <sup>-2</sup> g/(cm s))<br>25 cal/(mol Å <sup>2</sup> )                                                                                         |
|                                                   | DNA                         | Length per base pair<br>Volume per base pair<br>Charge density<br>Persistence length                                                                                                                                                                                                       | ~ Lhydr<br>I <sub>bp</sub><br>V <sub>bp</sub><br>λDNA<br>ξp                                                                                        | ≈1/3 nm<br>≈1 nm <sup>3</sup><br>2 e/0.34 nm<br>50 nm                                                                                                                                                                                          |
|                                                   | Amino acids<br>and proteins | Radius of "average" protein<br>Volume of "average" protein<br>Mass of "average" amino acid<br>Mass of "average" protein<br>Protein concentration in cytoplasm<br>Characteristic force of protein motor<br>Characteristic speed of protein motor<br>Diffusion constant of "average" protein | <sup>P</sup> protein<br>Vprotein<br>Maa<br>Mprotein<br>Cprotein<br>Fmotor<br>Vmotor<br>Dprotein                                                    | $\approx 2 \text{ nm}$<br>$\approx 25 \text{ nm}^3$<br>$\approx 100 \text{ Da}$<br>$\approx 30,000 \text{ Da}$<br>$\approx 300 \text{ mg/mL}$<br>$\approx 5 \text{ pN}$<br>$\approx 200 \text{ nm/s}$<br>$\approx 100 \mu \text{m}^2/\text{s}$ |
|                                                   | Lipid bilayers              | Thickness of lipid bilayer<br>Area per molecule<br>Mass of lipid molecule                                                                                                                                                                                                                  | d<br>A <sub>lipid</sub><br>m <sub>lipid</sub>                                                                                                      | ≈5 nm<br>≈ $\frac{1}{2}$ nm <sup>2</sup><br>≈800 Da                                                                                                                                                                                            |

| Substance                          | % of total dry weight | Number of molecules | Table 2.1 Observed                 |
|------------------------------------|-----------------------|---------------------|------------------------------------|
| Macromolecule                      |                       |                     | an <i>E. coli</i> cell. (Data from |
| Protein                            | 55.0                  | $2.4 	imes 10^6$    | F. C. Neidhardt et al., Physiology |
| RNA                                | 20.4                  |                     | of the Bacterial Cell, Sunderland, |
| 235 RNA                            | 10.6                  | 19,000              | M. Schaechter et al., Microbe.     |
| 16S RNA                            | 5.5                   | 19,000              | Washington DC, ASM Press, 2006.)   |
| 5S RNA                             | 0.4                   | 19,000              | 2                                  |
| Transfer RNA (4S)                  | 2.9                   | 200,000             |                                    |
| Messenger RNA                      | 0.8                   | 1,400               |                                    |
| Phospholipid                       | 9.1                   | $22 \times 10^6$    |                                    |
| Lipopolysaccharide                 | 3.4                   | $1.2 \times 10^6$   |                                    |
| DNA                                | 3.1                   | 2                   |                                    |
| Murein                             | 2.5                   | 1                   |                                    |
| Glycogen                           | 2.5                   | 4,360               |                                    |
| Total macromolecules               | 96.1                  |                     |                                    |
| Small molecules                    |                       |                     |                                    |
| Metabolites, building blocks, etc. | 2.9                   |                     |                                    |
| Inorganic ions                     | 1.0                   |                     |                                    |
| Total small molecules              | 3.9                   |                     |                                    |

Table 2.1 Physical Biology of the Cell (© Garland Science 2009)

# **Eukaryotic Cell**

![](_page_5_Picture_1.jpeg)

![](_page_6_Figure_0.jpeg)

![](_page_6_Picture_1.jpeg)

20 µm

![](_page_6_Picture_3.jpeg)

![](_page_7_Figure_0.jpeg)

![](_page_8_Figure_0.jpeg)

![](_page_9_Figure_0.jpeg)

An important question you can ask yourself is the following how this plot changes during the cell cycle? Can we observe protein expression in real time? How these expression pattern change over time?

### Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis

Prabuddha Sengupta<sup>1,4</sup>, Tijana Jovanovic-Talisman<sup>1,3,4</sup>, Dunja Skoko<sup>1</sup>, Malte Renz<sup>1</sup>, Sarah L Veatch<sup>2</sup> & Jennifer Lippincott-Schwartz<sup>1</sup>

Photoactivated localization microscopy (PALM) is a powerful approach for investigating protein organization, yet tools for quantitative, spatial analysis of PALM datasets are largely missing. Combining pair-correlation analysis with PALM (PCPALM), we provide a method to analyze complex patterns of protein organization across the plasma membrane without determination of absolute protein numbers. The approach uses an algorithm to distinguish a single protein with multiple appearances from clusters of proteins. This enables quantification of different parameters of spatial organization, including the presence of protein clusters, their size, density and abundance in the plasma membrane. Using this method, we demonstrate distinct nanoscale organization of plasmamembrane proteins with different membrane anchoring and lipid partitioning characteristics in COS-7 cells, and show dramatic changes in glycosylphosphatidylinositol (GPI)anchored protein arrangement under varying perturbations. PCPALMis thus an effective tool with broad applicability for analysis of protein heterogeneity and function, adaptable to other single-molecule strategies.

show no enriched signal or specific spatial organization when visualized optically because the scale of their heterogeneity is too small to be resolved. Techniques such as electron microscopy<sup>5,6</sup>, near-field scanning optical microscopy<sup>7</sup> and fluorescence resonance energy transfer<sup>8,9</sup>, all of which can be used for nanoscale interrogation, do not offer a detailed nanoscopic description of overall plasma-membrane protein organization at high density owing to several technical obstacles. In particular, high-density labeling of proteins in electron microscopy is difficult, antibodies used in electron microscopy and near-field scanning optical microscopy may cause artifactual cross-linking (or result in multiple labeling of single proteins)<sup>10</sup>, mechanical rip-off of the top portion of the cell to visualize plasma-membrane proteins in electron microscopy could well disrupt plasma-membrane nanoscale organization, and fluorescence resonance energy transfer cannot be used to interrogate protein organization over distances greater than ~10 nm.

A promising approach to overcome many of these limitations is single-molecule super-resolution imaging, involving single marker switching to enable light emission from only one fluorophase in a differentian limited enable. Depending on the fluoro-

#### NATURE METHODS | VOL 8 NO.11 | NOVEMBER 2011 | 969

<sup>1</sup>The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA. <sup>2</sup>Department of Biophysics, University of Michigan, Ann Arbor, Michigan, USA. <sup>3</sup>Present address: Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, USA. <sup>4</sup>These authors contributed equally to this work. Correspondence should be addressed to JL.S. (jlippin@helix.nih.gov).

Questions :

- What is the distribution of membrane protein plasma membrane?
- How can we separate cluster formation in membrane?
- What is the spatial organization in plasma membrane?

![](_page_11_Picture_4.jpeg)

Problems to be solved:

- 1. Plasma membrane protein has no signal to resolve
- 2. Scale of heterogeneity is so small, about 10 nm. It can not be resolved regular fluorescence microscopy and confocal microscopy
- 3. Electron microscopy does not give any dynamic information

### Single Molecule DNA Sequencing Consists of Many Poisson Processes in Series

![](_page_12_Figure_1.jpeg)

J. Korlach, S. Turner and coworkers. Science 323, 133 (2009)

# How long does the biological processes take? – Temporal resolution in biology

![](_page_13_Figure_1.jpeg)

![](_page_14_Figure_0.jpeg)

Figure 3.1 Physical Biology of the Cell (© Garland Science 2009)

# **Stokes-Einstein Equation**

•  $D = k_B T / 6\pi \gamma R = 100 \text{ um}^2/\text{s}$ , diffusion constant of a single protein

Thermal energy at room temperature

- At 25 C,  $k_B T = 4.11 \times 10^{-21} \text{ J or Nm}$
- $\gamma = viscosity$  of the medium,  $10^{-3} \text{ Ns/m}^2$
- $R = radius of the protein, average = 2.5 10^{-9} m$

# Active transport vs. Passive transport

![](_page_16_Picture_1.jpeg)

Vs.

![](_page_16_Picture_3.jpeg)

 $t_{diffusion} = x^2 / qD$ 

q is the dimension factor

Length of E.coli = 2 um  $t_{in e.coli} = 4 \text{ um}^2 / 2x100 \text{ um}^2/\text{s} = 20 \text{ ms},$ fast enough to regulate events in bacteria.

Length of cell = x = 40 um  $t_{in e.coli} = 1600$  um<sup>2</sup>/2x100um<sup>2</sup>/s = 8 s Very slow process to transport proteins and organelles in the cell

## Axon

![](_page_17_Picture_1.jpeg)

Suppose length of axon 200 um

 $t_{in e.coli} = 40000 \text{ um}^2 / 2x100 \text{ um}^2/\text{s} = 200 \text{ s}$ Very very slow process to transport proteins and organelles in the cell Active transport system to solve the problem!! Kinesin moves along the microtubule.

![](_page_18_Figure_1.jpeg)

![](_page_19_Picture_0.jpeg)

![](_page_19_Figure_1.jpeg)

#### bacterial cell division

![](_page_20_Figure_1.jpeg)

Figure 3.2c Physical Biology of the Cell (© Garland Science 2009)

![](_page_20_Figure_3.jpeg)

![](_page_20_Picture_4.jpeg)

Figure 3.2d Physical Biology of the Cell (© Garland Science 2009)

#### protein synthesis

![](_page_21_Figure_1.jpeg)

Figure 3.2e Physical Biology of the Cell (© Garland Science 2009)

#### transcription

![](_page_21_Figure_4.jpeg)

Figure 3.2f Physical Biology of the Cell (© Garland Science 2009)

![](_page_22_Figure_0.jpeg)

### E.Coli cells divide in 40-50 minutes.

#### minutes

![](_page_23_Picture_2.jpeg)

![](_page_23_Picture_3.jpeg)

![](_page_23_Picture_4.jpeg)

![](_page_23_Picture_5.jpeg)

![](_page_23_Picture_6.jpeg)

![](_page_23_Picture_7.jpeg)

![](_page_23_Picture_8.jpeg)

![](_page_23_Picture_9.jpeg)

![](_page_23_Picture_10.jpeg)

![](_page_23_Picture_11.jpeg)

![](_page_23_Picture_12.jpeg)

![](_page_24_Figure_0.jpeg)

![](_page_25_Figure_0.jpeg)

Figure 3.15a Physical Biology of the Cell (© Garland Science 2009)

![](_page_26_Figure_0.jpeg)

Figure 3.17a Physical Biology of the Cell (© Garland Science 2009)

### Tracking the virus entry into cells in real time

![](_page_27_Figure_1.jpeg)

![](_page_27_Figure_2.jpeg)

![](_page_27_Figure_3.jpeg)

B. Brandenburg, L. Y. Lee, M. Lakadamyali, M. J. Rust, X. Zhuang, J. M. Hogle, "Imaging poliovirus entry in live cells", *PLoS Biol.* 5, e183, 1543-1555 (2007)