Microscopy — Magnification and Resolution
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Microscopy Is an instrument to see
small objects
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Magnification of an image
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Mag = Length of the object from eye piece / Real length of the object

Mag = I\/Iagobjective X I\/Iageyepiecex I\/Iagextralens

Bacteria is magnified to the objective and observed at a larger
size by the eye piece of the microscope



Diffraction of light: Bending light
with materials

When light passes around a small object it appears to bend
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When the light passes through a small opening it spreads out.
If the wavelength is comparable to or bigger than the size of an aperture or an
obstacle then significant diffraction takes place.
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Huygens' Principle ////
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Every wave front acts like a new source. i
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You see light as if it is bending
where the slit are. Point sources at
edges are removed because of
slit. Point sources at the corners of
slit do not have any contribution to
form the constructive patterns on
the screen.



Numerical aperture

NA= nsin(6)

R = A/2n(sin(0))

R Is the separation distance

A is the illumination wavelength

n is the imaging medium refractive index

0 is one-half of the objective angular aperture



Abbe’s theory

Ernst Abbe is the person who first established the theoretical framework for
iImage formation in a microscopy. Any imaging system has a finite limit of
resolution that is the capacity to generate distinguishable images of two close
objects.

Diffraction of light waves is the principal reason limiting the resolution.

diaphragms and lens edges restricts light rays, leading to each infinitely small
point being imaged as a diffraction spot of a finite size. Diffraction spots from
nearby points may overlap with each other and become indistinguishable. The
present experiment studies the diffraction resolution limit of a microscope
objective.

Objectives with different NA

‘ NA = (n)sln(p)\

(a) p=7° NA=0.12
(b) p = 20°NA=0.34
(c) p = 60°NA =0.87

Figure 2
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Airy Disc

Airy disc formation is caused by the diffraction or scattering of
the light as it passes through the small spaces in the specimen
and the circular back aperture of the objective.

Airy Discs Numerical Aperture and Airy Disc Size
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You can think of less resolution in small NA as the beam pass

through a small slit therefore very wide zero order peak at the
center of the airy disc.

http://www.walter-fendt.de/phl4e/singleslit.htm




Nyquist sampling theorem for
microscopy

« Consider the smallest resolvable distance in the image is 200 nm, if
you use 60x objective the distance is 12 um. The frequency is 1/12.

* The pixel sampling frequency should be 1/6, twice the ratio of
distance frequency.

60 x objective = 12000 nm = 12 um
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AVIRIIIIIII e ee Pixels on the camera

10 Megapixel CCD,
Each pixel is 10 um.
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Pixel size and resolution
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what If the camera has a very small
pixel size?

« Small pixel size will collect less photons, So you will need a longer
exposure times for the brightness of image.

« There is a trade-off between the resolution and image brightness.

2 um pixel size > l.um pixel size

4 " “Photon Ra‘in"

Small Large
Pj Pixel

© Eagm W, Clank
www.clarkvision.com

200 ms exposure = 200 ms eposure
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Immersion objectives

Immersion objective should be use with an oil or water that depend on
the NA of the objective. Oil or water is added between the front lens
and the coverslip. These objectives are very small working distance but
high NA number.
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Objective working distance

It is defined as the distance from the lens of the objective to the surface
of the coverslip when the specimen is in sharp focus.
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Depth of Field

* You can get sharp images with High NA objective theoretically. It is
good if there is a backgrounds signal from other planes along the z
axis. However field of gets smaller.

Average image of all
layers. Waves from
each layer contribute
to the image.

WY(x,y) = 2W(x,y)
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Fluorescence Microscopy Principles

Multiphoton Excitation Fluorescence
Microscope Configuration
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Fluorescence Assay to monitor
Kinase activity in cells
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Fluorescence

Electronic transition during fluorescence
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Spontaneous vs. Stimulated
Emission

Energy Spontaneous Stimulated
Emission Emission

initial final initial final

DD Pawl 2002

Fluorescence is a spontaneous emission process. The decay happens
randomly.

In stimulated emission, just before the photon emitted during the decay
another photon arrives and the dipoles of these two photons will start
oscillate the the same phase.

Remember that the decay is slow 10°s. And excitation is very fast

The second photons can not excite the electron because it has already Iin
the excited state.

Stimulated emission can be explained by dipole-dipole
Interactions among photons.



Quantum yield of fluorophore

The fluorescence quantum yield (®;) is the ratio of photons
absorbed to photons emitted through fluorescence.
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Principle of Excitation and Emission
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Components of inverted microscope

Olympus I1X70 Filter
Inverted Tissue Culture T"lay
Microscope o Tungsten
’ Halogen
Peltier-Cooled E —Lamphouse
CCD Camera | g
.‘it Inverted
7 Microscope
i = Condenser/Lamphouse
| Pillar

DIC Prism and Phase Ring
Condenser Turret
Mercury/Xenon
Arcrl!amp
Housing

Binocular
Observation
Tube

Beamsplitter

35-Millimeter
Camera
System

Microscope
Electrical
Control System

Stage Focus Microscope
Mechanism Base/Frame



Upright Microscope
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Fluorescence Microscope Arc-Discharge Lamp Housing
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ance Filter Cube (Block) and Associated Spectra
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Epi-Fluorescence-Widefield

Kdohler lllumination in Reflected Light Fluorescence
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Widefield vs. Point Scanning Confocal

Widefield versus Confocal Point Scanning of Specimens

Cover
Glass c
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(Large Volume) EXcaaion (Small Volume

Figure 4

spatial filtering technique eliminate out-of-focus light or glare in specimens whose
thickness exceeds the dimensions of the focal plane.
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In confocal system: The whole field is not
excited all at once.
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The shape of the excitation light is in
the diffraction limited points, which
can be scanned over the sample.

A point source of light is collected by
some intermediate lens and is
transmitted as parallel rays.

The parallel rays enters the objective
back aperture and is focused by the
objective as a single point on the
sample.

Changing the angle of parallel light
changes the location of the point
source at the sample plane.



Confocal vs Epifluorescence Images

(b)

(e) ()

Figure 1
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Point Scanning Confocal
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Three Optical Sectioning Methods

Compare Sectioning Methods with Widefield Fluorescence Methods
1. Optical scanning using galvano mirrors
2. Spinning disc confocal microscope

3. Multi-photon confocal microscopy
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Z- axis imaging using confocal microscopy

Z axis stack of optical sections through
a sunflower pollen grain. It reveals
internal variations in autofluorescence
emission wavelengths.

Pollen Grain Serial Optical Sections by Confocal Microscopy

They represent about 3 pm distance of

focal planes.

It is about the size of 25 - 40 microns in
diameter.

12 * 3um = 40 ym approximately.

Figure 6

sunflower pollen grain revealing internal variations in
autofluorescence emission wavelengths



/-Series and Three-Dimensional
Imaging
In confocal microscope, images in Z axis are collected by

coordinating step-by-step changes in the fine focus of the
microscope with sequential image acquisition at each step.

Optical Section Z-Series

Computer-controlled stepping motor
that changes focus by predetermined
increments therefore the focusing on
the sample plane can be adjusted.




In summary

In wide field microscopy, images are formed by lenses from all
specimen points simultaneously. Disadvantage is that image is
formed by both in-focus and out_focus-light. Remember every
objective comes with certain range of depth. Deconvolution
technique could be used by collecting series images through

different depths and reconstructing the image.
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TIRF MICROSCOPY
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Objective vs. Prism TIRF
Less than 150-200 nm thick evanescent field can be
observed through tirf system.
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Polarization of light

Light Passing Through Crossed Polarizers

Polarizer 2
(Horizontal) —

Polarizer 1
(Vertical)

Incident Beam
(Unpolarized)

Polarized
Light Wave

Figure 1

Seven-Segment Liquid
Crystal Display (LCD) Polarizer 2
Negative 3

Liquid Crystal Electrodes
ndwich

Positive
Electrodes

Display

Polarizer 1
Figure 3



Excited with a plane-polarized light, emit light into a fixed
plane if the molecules remain stationary during the
fluorophore's excitation.

Ramd rotation GiycoWord |
0 — C?\ A
Light is
depolarized

Ligand ldbeled with a ﬂuorescenl molecule

Polarized light P
Slow rotatlo/r} I

polarized

Receptor molecule

However, the molecule will emit light into a different plane if the molecule rotates
and tumbles during the fluorophore's excitation. Therefore, when a fluorescent
molecule binds to a large molecule such as protein, the emitted light is obviously
less depolarized



The fluorescence polarization (P) of a labeled macromolecule
depends on the fluorescence lifetime (1) and the rotational

correlation time (Tc)

Tc = nV/ kT R .is Ideal gas constant
K is boltzman constant

N IS viscosity

V molecular volume

MW molecular weight

H is hydration

V is specific volume

Or

Tc = ("(MW/RT) (V+h)



Lets consider a small protein

If Tc >> Tf ro/r>> 1 very low anisotropy

Tc =nV/ RT

Tc =nVlow/ RT Tcis very short

<> <3

Tc is very short Tc is very long



Fluorescence polarization is very important for high
throughput assay where many drugs can be tested for a
given target molecules. Fluorescence polarization (FP) is
a technique for analyzing the interaction of molecules.

— PL

Small fluorescent ligand + Protein target ———

. Slow rotation
Fast rotation High R

Low R



Fluorescence Polarization Immunoassay
Patented by Abbott labs = $ million

Kinase
m-i- ATP R 2 ADP + c::gzn

L k
Tnc

High Polarization Low Polanza\ ion
(bound tracer) (free tracer)

When a drug molecule tagged with a fluorophore
binds to the target molecule, polarization changes

It does not require immobilization or washing step, and it is
used in immunoassay, and therapeutic drug monitoring in
clinical pharmacy.



Remember that faster rotation of molecules
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Optical Setup for polarization microscopy

In a typical experiment the sample containing the fluorescent probe is excited with linear
polarized light and the vertical and horizontal components of the intensity of the emitted light
are measured and the polarization (P) or anisotropy (r) are calculated using the following

equations:

Polarizer

_ Polarization (P) = (I, - 1) / (I,+
| )st=Anisotropy (r) = (I, - 1) / (I,+
2l,)




Fluorescence Correlation

Spectroscopy
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Two-Photon Excitation

Two-photon excitation requires the absorption of two photons of theoretically double the wavelength
usually required for the excitation, within the tiny time interval of about one femtosecond (10-15 s). In
order to get a reasonable probability of such three-particle events, the photon flux must be extremely
high. This means, that not only a high output power is required, but usually also pulsed excitation is
used, to get an even higher photon density per pulse relative to the average output power. The joint
probability of absorbing two photons per excitation process is proportional to the mean square of the
intensity. This results in inherent depth discrimination such that only the immediate vicinity of the
objective’s focal spot receives sufficient intensity for significant fluorescence excitation.



Confocal v. Multi-Photon
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Point Spread Function
(PSF) sample

We learned in class that a real point object, once
captured by a lens, produces an image that is only an
approximation of the object. The lens transforms the
object of discreet dimensions and the result is shown to

the left.

The point is no longer a point and the resultant object is

called a point spread function (PSF). Since an object of
any form and size is just a collection of points, we
should understand how a lens (microscope) distorts a
single point. We will use the fluorescent microscope to
observe the PSF and compare it to the PSF formed
through optical sectioning methods.

The sample is a fluorescent latex bead, 175nm +/- 5nm
in diameter and embedded with a fluorescent dye. The
excitation/emission wavelength is 505 nm/515 nm.



Airy disc PSF in the image plane is produced by an point source in
the object plane

Complete sphernical wave Partial spherical wave comenging
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