Week 10 Image Data Analysis(2)

Today Open images with matlab Reading image and video files Thresholding Convolution

Segmentation

- 1. Thresholding
- 2. Watershed

How to open image files? Functions: dir, imfinfo

cd 'C:\Users\90539\Documents\Teaching\MBG5X\Exampledatasets_nurhan_KODMSON_new'

```
Spfile<mark>=</mark>dir('*.tif')
moivepro = imfinfo(Spfile(5).name);
```

```
xsize = moivepro(1).Width;
ysize = moivepro(1).Height;
imageData = zeros(ysize, xsize, 1);
%%%
```

A single file have many image frames

%%
for i=1:100;
fname= flistmovie{1};
imageData(:,:,i) = imread(fname, 'tif', i);
end
%%
figure(1)
subplot(1,2,1)
imshow(imageData(:,:,1),[])
subplot(1,2,2)
imshow(imageData(:,:,80),[])
%%

Functions: imread

26 27 28 - 29 - 30 - 31 - 32 - 33 - 34 35	%% figure(3) for i=1:20; subplot(4,5,i) imshow(imageData(:,:,i), hold on end])			
26					

Insert the image file into cell array

%%

 $imgLD{1}=double(imageData(:,:,1:80))$ smin=min(min(imgLD{1}(:,:,1))) smax=max(max(imgLD{1}(:,:,1))) sration=smax/smin [sr,sc,sl]=find(imgLD{1}(:,:,1)==smax)

%%

Now run the movie file with the following code

%% figure(1) for i=1:80 imshow(imgLD{1}(:,1:end,i),[]) hold on pause(0.2) end

Open hela cell movies

V		nee		(oseis/soss/socarrents/reaching/imposy/rectare_4_obenin
	I	.ec	ture_	4_openimages_videos.m 🗙 🕂
	57			% loadinf other movies
-	8	_		Spfile=dir('032 GEP tif')
	9	_		flistmovie = {Snfile(1) name}:
6	50			institutione (opinic(1).name),
e	51	_		moivepro = imfinfo(flistmovie{1})
e	52	_		xsize = moivepro(1) Width
e	3	_		vsize = $moivepro(1)$ Height
e	54	_		imageData = zeros(vsize xsize 1)
e	55	_		imageData = imread(flistmovie{1}, 'tif', 1);
e	56	_	-	for i=1:40
e	57		T	· · · · · · · · · · · · · · · · · · ·
e	58	_		fname= flistmovie{1};
e	59	_		imageData(:i) = imread(fname, 'tif', i);
7	0	_		end
7	1			%imgLD{1}=double(imageData)
7	2	_		imgLD{1}=double(imageData(:,:,1:40))
7	3	_		smin=min(min(imgLD{1}(:,:,1)))
7	4	-		$smax=max(max(imgLD{1}(:,:,1)))$
7	5	-		sration=smax/smin
7	6	-		$[sr,sc,sl] = find(imgLD{1}(:,:,1) = = smax)$
7	7			%
7	8			
7	9	-	Ę	for i=1:1
8	80	-		figure(1)
8	31	-		imshow(imgLD{1}(:,1:end,1),[])
8	32	-		hold on
8	33	-		pause(0.5)
8	84	-	L	end
8	85			
P	6			%%

Sometimes movies files are saved as a individual image files

View

Insert Tools Desktop Window

Help

🗢 🌩 🖸 🔽 🖉 📙	C: Users	90539 🕨 Documents 🕨	Projects 🕨	Softwar
Current Folder				
Name	Size	Date Modified 🔺	Туре	
t000.tif	267 KB	11/23/2012 2:16 PM	TIF File	^
🌆 t002.tif	265 KB	11/23/2012 2:16 PM	TIF File	
🌆 t003.tif	261 KB	11/23/2012 2:16 PM	TIF File	
🏝 t004.tif	259 KB	11/23/2012 2:16 PM	TIF File	
🌆 t005.tif	260 KB	11/23/2012 2:16 PM	TIF File	
🏝 t006.tif	266 KB	11/23/2012 2:16 PM	TIF File	
🏝 t007.tif	265 KB	11/23/2012 2:16 PM	TIF File	
🌆 t008.tif	264 KB	11/23/2012 2:16 PM	TIF File	
🏝 t009.tif	260 KB	11/23/2012 2:16 PM	TIF File	
🏝 t010.tif	256 KB	11/23/2012 2:16 PM	TIF File	
🏝 t011.tif	255 KB	11/23/2012 2:16 PM	TIF File	
🏝 t012.tif	263 KB	11/23/2012 2:16 PM	TIF File	
🏝 t013.tif	262 KB	11/23/2012 2:16 PM	TIF File	
🌌 t014.tif	261 KB	11/23/2012 2:16 PM	TIF File	
🌌 t015.tif	260 KB	11/23/2012 2:16 PM	TIF File	
🏝 t016.tif	253 KB	11/23/2012 2:16 PM	TIF File	
🏝 t017.tif	251 KB	11/23/2012 2:16 PM	TIF File	
🌌 t018.tif	259 KB	11/23/2012 2:16 PM	TIF File	~
Details				

```
%%
for i=1:nframes;
    % read the name
    imageData(:,:,i) = imread(Spfile(i).name, 'tif', 1);
  end
```

```
imgLD{1}=double(imageData);
```

```
figure(1)
imshow(imgLD{1,1}(:,:,40),[min(min(imgLD{1,1}(:,:,1))) max(max(imgLD{1,1}(:,:,1)))/4.0])
max(max(imgLD{1,1}(:,:,1)))
min(min(imgLD{1,1}(:,:,1)))
saveas(gcf, 'originalfiguresim 011.tif')
```


Image histograms

Functions: reshape, find, histcounts

%% x= reshape(imgLD{1}(:,:,1),1,[]); y=sort(x,'ascend')

[r,c,l] = find(y>0)

edges=1:1:Lcutmax n=histcounts(y(1,c(1,1):end),edges)

figure(2) bar(edges(1:151), log(n))

Watershed based segmentation

After convolution

Binary image after thresholding

Bwdist, used for the distance transform of image, Distance between pixel and nearest nonzero pixel

%%

File Ed

bw=imagetes;

D = bwdist(imagetes,'quasi-euclidean'); %D = bwdist(~imagetes,'chessboard'); %figure(24) %imshow(D,[]) %title('Distance Transform of Binary Image') D = D; figure(25) imshow(D,[])

%% bw=imagetes; [D,idx] = bwdist(imagetes,'quasi-euclidean'); %D = bwdist(~imagetes,'chessboard'); %figure(24) %imshow(D,[]) %title('Distance Transform of Binary Image') Dx = -D; figure(25) subplot(1,2,1) imshow(Dx,[]) subplot(1,2,2) imshow(D,[]) figure(26)

imshow(idx,[])

Here we compute the regional minima


```
%%
%title('Complement of Distance Transform')
%
%step 2
mask = imextendedmin( (-1*min(min(D)))*D,36);
% figure(34)
% imshowpair(bw,mask,'blend')
%
figure(35)
subplot(1,2,1)
imshow(D,[])
subplot(1,2,2)
imshow(mask,[])
```

Here we find the global minimum for each region

0/ 0/

Computation of marked image

File Edit View Insert Tools Desktop Window Help

%% D2 = imimposemin(D,mask); figure(36) imshow(D2,[])

Here is the watershed image

File Edit View Insert Tools Desktop Window Help

%% Ld2 = watershed(D2); bw3 = bw;bw3(Ld2 == 0) = 0; % % figure(37) % subplot(1,2,1) % imshow(bw3,[]) % subplot(1,2,2) % imshow(Ld2,[]) label1 = bwlabel(bw3); rgb = label2rgb(label1,'jet',[0 0 0]); stats = regionprops("table", label1, "Centroid", "MajorAxisLength", "MinorAxisLength") figure(3) imshow(rgb) hold on plot(stats.Centroid(:,1), stats.Centroid(:,2),'ow','linewidth',1,'Markersize',5)

Analysis of Hela Cells

File Edit View Insert Tools Desktop Window Help

Convoluted image

360		
361		%%
362	-	clear imageOut3
363	-	objectSize=50;
364	-	noiseSize=3
365	-	□ for i=1:nframes;
366		
367	-	imageIn = imgLDout{i,1};
368	-	[imageOut3{i,1}]=objFilter5son(imageln,objectSize, noiseSize)
369	-	- end
370		
371	-	□ for i=1:1
372	-	figure(100)
373	-	subplot(1,2,1)
374	-	imshow(imgLD{1,1}(:,:,i),[])
375	-	subplot(1,2,2)
376	-	imshow(imageOut3{i,1}(:,:),[])
377		
378	-	^L end
379		

conv2

It is usd to remove pixel noise and create circular objects

ames
ames
ames
ames
ove pixel noise
pixel (10x obje
er. The default
0

Now we can segments the image by finging the connected pixels

380		%%
381		% check image before separate pixels
382	-	katdegeri <mark></mark> ≡1.10
383	-	rang=katdegeri*std(imageOut3{1,1}(:));
384	-	[rPixel,cPixel,lo]=find(imageOut3{1,1}(:,:) > rang);
385	-	imagetes=zeros(1024,1024);
386	-	imagetes=zeros(512,512);
387	-	for i=1:size(rPixel,1);
388	-	imagetes(rPixel(i,1),cPixel(i,1))=1;
389	-	end
390	-	figure(13)
391	-	imshow(imagetes,[])
392		%%

393	%%
394	% here compute the cell regions
395	% segmentation step based on colvoluted image
396 -	tic
397 -	clear output1
398 -	□ for i=1:1;
399 -	
400 -	[output1{ 1,1},output1{1,2}]=objExplorer2son(imageOut3{i,1},katdegeri,i); %028
401	
402 -	end
403 -	toc

100	100											
	404	8										
	405 -	5 - I=size(imageOut3{1,1},1)										
	406 -	5 - m=size(imageOut3{1,1},2)										
	407 -	- imagetest=zeros(l.m);										
	408 -	- cellidx=output1:										
	409 -	a - k = 1										
	410 -	$\Box = 1$ for ts=1:size(cellidx{1,1},1)										
	411											
	412	2 % here we fill the array with cell numbers from 1 to n										
	413	% we use the coordinates data from										
	414 -	$= \frac{1}{2}$ for i=1;size(cellidx{1,2},1);										
	415	5										
	416 -	5 - if cellidx{1,2}(i,3)==ts:										
	417 -	7 - imagetest(cellidx{1,2}(i,1),cellidx{1,2}(i,2))=kl;					I					45
	418 -	end end										
	419 -	ə – – end				-	•					
	420 -	o – kl <mark>=</mark> kl+1										40
	421 -	L – end										
	422	2						(
	423 -	a – objSgmnt{1,1}=imagetest;										35
	424 -	a – colMatList=[0,0,0];										50
	425 -	5 - colMatList(2:257,1:3)=jet(256);										
	426	5					~					
	427 -	7 – figure(2)					•			_		30
	428 -	imagesc(imagetest)							o) ()	0		
	429 -	 colormap(colMatList) 					0					
	430 -	o – colorbar						-		0	_	25
	431 -	L – hold on					0	0				
	432 -	2 – plot(cellidx{1,1}(1:end,1), cellidx{1,1}(1:end,2),'ow','linewidth',1,'Ma	arkersize',5)								
	433 -	saveas(gcf,'sim1segmentedimage2.tif')					<u>o</u>				-	20
	434 -	a – save('segmenteddatasim2','output1')						C		_		
	435		_						0			
		Q	<u> </u>		•	_			0	0	_	15
		350	(0				_		
				· .			-					
				- <u>e</u>			<u> </u>					10
		400 -			0							10
									Ŭ			
		450		•			0				-	5
		500					0	o				
		500		450	000	050 000	0.50	102	450	500		0
			ou 100	150	200	250 300	350	400	450	500		