Week 11 Cell tracking techniques

Last week Open images with matlab Reading image and video files Thresholding Convolution

Segmentation

- 1. Thresholding
- 2. Watershed

Image histograms

Functions: reshape, find, histcounts

%%

x= reshape(imgLD{1}(:,:,1),1,[]); y=sort(x,'ascend')

[r,c,l]<mark></mark>≡find(y>0)

```
edges=1:1:Lcutmax
n=histcounts(y(1,c(1,1):end),edges)
```

figure(2) bar(edges(1:151), log(n))

[r,c,]=find(y>0)

edges=1:1:Lcutmax n=histcounts(y(1,c(1,1):end),edges) %% figure(2) subplot(1,2,1) bar(edges(1:151), log(n)) subplot(1,2,2) bar(edges(1:151), n) %%

Segmented images

Watershed method

Traditional method Thresholding, gaussion filtering

Cell tracking for cell types

Qureshi et al Comp Biol and Medi 2022

Imaging and tracking at micro and nanoscale

Micro: Average cell size from 10 to 100 μm

Shah et al Nature comm 2019

Nano: Subcellular components their average size from 40 to 300 nm

Conkar et al, Scientific reports, 2019

Data growth and challenges

	Perimeter	Ellipticity	Intensity	
Cell 1	100	1.2	5	6
Cell 2	120	1.3	8	10
	88	2.4	6	13

 Exponential data growth: State or the art imaging methods provides GB to TB of data per run or day.

Desired features for image analysis pipelines

- Automated systems
- Minimum user intervention
- Reliable and accurate results
- Fast analysis time
- Handle the image&video data acquired with different imaging conditions

Why is the image processing intrinsically difficult?

Intensity levels

Photodamage

Ahrens et al 2013

Nano Micro **Object size**

Cell splitting and apoptosis

Image analysis •

Shape

Uneven labeling

Confluency

Image data types are very diverse.

Ulman et al Nature Methods 2017

 There is no universal algorithm that can reliably analyze all of the images shown above.

Current commercial or open source image analysis tools

Commercial programs Imaris, Volovity, ArivisVision4D

Open source software Cellprofiler, TrackMate, MtrackJ, CellTracker, ilastik

Comparison of open source image analysis tools

Table 1 Comparison of features in tTt/qTfy and existing software for cell tracking and fluorescent marker quantification in long-term time-lapse microscopy

Feature required for	Tool feature	ImageJ ²⁶ (v1.50e, Fiji distribution ¹⁵)	lcy ¹⁴ (v1.7.3.0)	CellProfiler ¹⁷ (v2.1.1)	LEVER ²⁷ (v7.13.2)	tTt, qTfy
Cell tracking in long- term imaging experi- ments	Process amounts of image data too large to fit in memory	Limited ^a	No	Yes	Yes	Yes
	Support for multi-dimensional image data	Limited ^b	Limited ^b	Limited ^{b,c}	Limited ^{b,c}	Yes ^d
	Track cells over multiple overlapping fields of view	Limited ^e	No	Limitede	No	Yes [†]
	Import existing trees for manual inspection and cor- rection	Limited ^g	No	No	No	Yes
Quantification of signals from fluores-	Correction of uneven illumination in fluorescence images	Limited ^h	Limited ^h	Limited ^h	No	Yes
	Efficient manual inspection and correction of segmen- tation and quantification	Limited ⁱ	Limited ⁱ	Limited ⁱ	No	Yes ^j
	Integrated visualization of lineage trees and fluores- cent marker time courses	No	No No	No	No	Yes
Usability	Integrated workflow for tracking and quantification	Nok	Yes	Yes	No	Yes
	Expert knowledge required	Yes ^{k,I}	Yes ^I	Yes ^m	Yes ⁿ	No
	Processing of image data that cannot be analyzed with vexisting automatic methods	Limited ^{1,o}	Limited ^{1,0}	No ^p	No ^p	Yes

Nature Biotech, 703, 2016

Classic and deep learning based cell segmentation methods

- Classic approaches: Background subtraction, watershed, active contour, n-pixel linkages.
- Gradient watershed

Yang et al. Pattern Recog., 2014

Zımmer et al. IEEE Medi Imaging., 2002

• Deep learning: Neuronal networks, U-net, deepCell.

Convolutional Neuronal Networks Neuronal Neuronal Networks Ronnberger et al. Medi Image, 2015 Appletion<math display="block">Appletion<math display="block">App

Falk et al. Nature methods, 2019

Cell tracking methods for time-lapse image acquisition

- Outline detection
- Model-based approaches (active contour)

Major issues: Long processing time, tracking errors if cells do not overlap

Li et al Med. Image An. 2008

Other cell tracking algorithms

• Unet+optical flow+nearest neighbor

Sugawara et. al. elife, 2022

• Kalman filter+maximum posterior probability

Assaf et. al. Med. Image Analysis. 2018

Local graph matching with Kalman filter

Liu et. al. Med. Image Vision Computing. 2017

Linear assigment based tracking

Jaqaman et al Nature methods 2008

Method name	Segmentation	Pre-track processing	Tracking
Adaptive cell tracking	n-pixel linkage, Bandpass filter	None (Automatic search radius)	Feature-based adaptive nearest neighbor method
^a KTH-SE	Bandpass filter, global thresholding, watershed	Scaling factor	Global tracking linking, state-space optimization
^a HD-Har-GE	Gaussian filtering, thresholding, cluster separation	Maximum displacement	Constrained distance based nearest neighbor method
^a NOTT-UK	Local thresholding	Threshold distance	Distance based nearest neighbor method
^a UZH-CH	Watershed segmentation with Otsu thresholding	Maximum distance	Distance based nearest neighbor method

Image processing is usually a difficult process. Can we make it simple?

 One way is to use advance programs that can process these images minimum user intervention. Current methods require many parameters being predicted by the user.

Method name	Segmentation	Pre-track processing	Tracking	^b Number of parameters
^a KTH-SE	Bandpass filter, global thresholding, watershed	Scaling factor	Global tracking linking, state-space optimization	17
^a HD-Har- GE	Gaussian filtering, thresholding, cluster separation	Maximum displacement	Constrained distance based nearest neighbor method	9
^a NOTT-UK	Local thresholding	Threshold distance	Distance based nearest neighbor method	5
^a UZH-CH	Watershed segmentation with Otsu thresholding	Maximum distance	Distance based nearest neighbor method	5

^aThese segmentation and tracking methods were previously described in detail.² ^bThe total number of parameters used to evaluate the Fluo-N2DH-GOWT movies at CTC can be found at https://www.nature.com/articles/nmeth.4473.

How many parameters are needed to determine the cell trajectories?

- Can we make the tracking simple and intuitive compared to other classical methods?
- Tracking section (many solutions are present from classic to AI driven segmentation)

Key parameters for cell tracking

- Maximum search radius
- Gap time
- Filter size
- Intensity threshold
- Average cell size
- Loss time

```
....
```

Can we automatically determine the maximum search radius? *Adaptive tracking algorithm* (Adtari).

Adaptive tracking algorithm: Computation of search radius

$$Ar(t) = \begin{cases} 2 * \max(D_{k_{i},(t,t+1)}), & \text{if } \max(D_{k_{i},(t,t+1)}) < \min(D_{k_{ij},t})/2 \\ \min(D_{k_{ij},t}), & \text{if } \max(D_{k_{i},(t,t+1)}) \ge \min(D_{k_{ij},t})/2 \end{cases}$$

Nonunique match

Qureshi et al Comp Biol and Medi 2022

Workflow of adaptive tracking method to determine cell trajectories and motility dynamics

Cell segmentation analysis for detected pixels after applying threshold filter

Segmentation results and extraction of key attributes for different cell types

Time course of geometric events: event map generation for identification of cell splitting

Example cell trajectories from adaptive tracking method

Qureshi et al Comp Biol and Medi 2022

Performance evaluation of *adaptive tracking* in timelapse videos

Correlation analysis of motility dynamics of GFP labelled RPE cell trajectories obtained from adaptive and constant distance methods

Layer-by-layer assessment of single-cells attributes: Motility maps

Qureshi et al Comp Biol and Medi 2022

Cell phenotype quantification: Single cell comparison of shape and motility features

Classification of cells based on instant speed and persistence

Example Codes

%% % tracking methods

katdegeri=0.48 avecellsize=30; [cllCntrsFn]=QuickExplorer(imageOut3,katdegeri,avecellsize);

%avecellsize=30 %cllCntrsFn]=QuickExplorer(imageOut, 2.8 ,avecellsize) [Trackreport5]=adaptiveTrack15(cllCntrsFn,3,8) size(Trackreport5{1,4}) %%

[Trackreport5]=adaptiveTrack15(cllCntrsFn,10,12) size(Trackreport5{1,4})

%%

[Trackreport5]=adaptiveTrack15(cllCntrsFn, 10, 12) size(Trackreport5{1,4})

_

%%

- sel=1
- se=40
- figure(121) %imshow(imageOut3{10,1}(:,:,1),[07])
- hold on
- _
- 📮 <mark>for j=sel:sel;</mark> imshow(imgLD{1,1}(:,:,j),[])
- hold on

- for i=1: size(Trackreport5{1,1},2), plot(Trackreport5{1,1}(sel:se,i),Trackreport5{1,2}(sel:se,i),'om', 'linewidth',1)
- hold on

end

- pause(0.1)
- j end

Saving the data

%%

```
%%
ns=14
Trackreportfinal{1,ns}=Trackreport3{1,1}
Trackreportfinal{2,ns}=Trackreport3{1,2}
Trackreportfinal{3,ns}=Trackreport3{1,3}
Trackreportfinal{4,ns}=Trackreport3{1,4}
Trackreportfinal{6,ns}=Afr
Trackreportfinal{6,ns}=ArY
Trackreportfinal{5,ns}='movie44'
```

save('ensondensitydata','Trackreportfinal')