Week 13
Regression analysis in biology



Scatter plot

Shows the relation between two variables
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Can we quantitatively measure the strength of relationship
between variables?

Linear regression is a form of regression in which one exploratory
variable is used to predict the outcome of a response variable.



Covariance

Does Y get larges (smalleR) as Y increase?
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Covariance > 0 if X and Y variables gets larger

mean of x=2.0525
mean of y = 55.4125
Sx =0.7916

Sy= 13.6537

n=80

Covariance < 0 if X and Y variables moves opposite direction



Covariance of Histamine vs mRNA levels
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Sign is a good indicator of relationship but
what is the meaning of 1.65? is it a strong or weak relationship?

To determine the strength of relation, Correlation coefficient
Is needed?



Covariance

Does Y get larges (smalleR) as Y increase?
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Covariance > 0 if X and Y variables gets larger
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Covariance < 0 if X and Y variables moves opposite direction



Covariance of Histamine vs mRNA levels
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Sign is a good indicator of relationship but

what is the meaning of 1.657 is it a strong or weak relationship?

To determine the strength of relation, Correlation coefficient
Is needed?



Correlation (r)

measures the direction and strength of relationship between two quantitative

variable.
The correlation r measures the direction and strength of the linear (straight line)

association between two quantitative variables x and y.
Although you can calculate a correlation for any scatterplot, r measures only

linear relationships.

— E (1' — 1\;| ( ~ lrl\;l . Yoo (o - E) s — )
M — I LY ! ) EEEet ]| R = =173
4 F T (e —@)°)

) "I.I'IIIE'_- IIrI'-'
1 ¥ m - 2w - §)
i — 1 L

close to n-1if x and y have

x = the sample mean of x,....X,,
y = the sample mean of y,,...,y,,

s, = the standard deviation of x, . . ., X,

s, =thestandarddeviationofy,,...,y,.
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Correlation coefficient always lies between -1 to +1
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Fitlm and polyfit functions

b = fitim(hist',genetrial’)

New to MATLAB? See resources for Getting Started,|
y ~ 1+ x1

Estimated Coefficients:

Estimate SE tstat pValue
(Intercept) 42.933 2.1767 19.724 4.544e-08
x1 3.2303 0.35081 §,2082 1.565%e-05

Number of cobservations: 10, Error degrees of freedom: 8
Root Mean Squared Error: 3.19%

R-squared: 0.914, Adjusted R-Squared: 0.903

F-statistic vs. constant model: 84.8, p-value = 1.57e-05

Jx >

[co,S]=polyfit(hist,genetrial,1)

co =

3.2303 42.9333

struct with fields:

R: [2x2 double]
df: 8
normr: 9.0124



Correlation sets
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Remember that correlation coefficient is an indicator of the strength of a linear

relationship between two variables, but its value generally does not completely
characterize their relationship



Summary of Correlation between two variables

* r =1 when all the points (x;, yi) lie on a line with positive slope

* r=-1 when all the points (xj, yi) lie on a line with negative slope

 When r = 0, then there is no positive or negative linear association between the

two variables (though the two variables may have a non-linear relationship).



How to find a best fit line? how do you know
If these coefficients are right? What does
software magically return the coefficients?

Equation

Data parameters y=axtbte

X = independent variable

y = dependent variable (maybe not dependent who knows)
b = intercept

a = slope

e = error



r* IN REGRES5I0ON

The square of the correlation, »*, is the fraction of the variation in the
values of y that is explained by the least-squares regression of v on x.

variance of predicted values ¥
variance of obscrved values

.
Fm =

Properties of r2

0=<r2=<1

if r° =1, it represents a straight line
if 2 =0, it indicates no correlation between y and x

Larger the r2 means higher correlation, but not always



R2 gets smaller by the size of Slope = 1.63
Intercept = -3.35
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Compare data fittings
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R2 gets smaller by the size of Slope = 1.63
Intercept = -3.35
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Gene expression in different cells
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Correlation of difference cell types

Liver cells, kidney cells and neurons
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Correlation ranges from -1 to 1
Covariance can be any number

Covariance returns the direction of relation while the correlation
returns the strength of relationship



MULTIVARIATE REGRESSION

In linear regression, a single independent variable was present. A total of two variables. In
multiple regression, y dependent variable (response variable) depends on a many
explanatory independent variables.

Now we can define linear function as

Y =constant (a) + B x,+ B X, + BX, ... T BX

It 1s also called as population regression equation.

y varies normally with a mean given by the population
regression equation



MULTIVARIATE REGRESSION

-y - dependent variable or also called response variable
- X, X,, X,... , X _are called independent variables
or explanatory variables.

- X values can either quantitative or categorical.

Y =constant (a) + B x,+ B X, + B.X, ... T BX



The statistical model for multiple linear regression is
Yi=PBo HPixi HPaxi2 + - +Pyxip tE;

fori=1,2,...,n.

v

Parameter coefficients of the model are Bg, B1, B2,....Bp, and o.

For the ith observation, the predicted response i1s
Vi =bythyx; Thyx,+- '+bpxip

e;= observed response — predicted response =y i — )" ;

=yi—bo —b1xi1 —=boxip = —bpxip



Examples of multivariate regression

1. Dependence of fuel consumption in cars to horsepower,
accelaration and weight (engineering)

2. Dependence of cancer risk to several genes (biology)

3. Dependence of home price to location, size,
type etc. (home market)
4. Dependence of hormone levels to genes

(health) . _
5. Dependence of reading score to mothers educaiton,

‘age, gender, family income etc. (social science)

In Matlab

mdl = fitlm(X,Y)



Dependence of cell growth to expression of geneX, geneY
and geneZ

Linear regression model:
Y ~1+x1+ x2 + x3

Estimated Coefficients:

Estimate SE tStat pValue
(Intercept) 47.153 26.499 1.7794 0.078342
x1 0.28602 0.069679 4.1048 8.4971e-05
x2 -0.0033967 0.0047938 -0.70856 0.48031
x3 -0.3098 0.071258 -4.3476 3.4254e-05

Number of observations: 100, Error degrees of freedom: 96
Root Mean Squared Error: 1.74

R-squared: 0.994, Adjusted R-Squared 0.993

F-statistic vs. constant model: 4.95e+03, p-value = 4.52e-105
>>

Cell growth =47 + 0.28geneX -0.003geneY-0.30geneZ



Dependence of hormone levels to expression of geneX,
geneY and geneZ

1 P 3 4 1 2
1 120 140 249 1 2
2 120 218 245 2 6
3 123 124 244 3 7
4 125 248 243 4 7
5 128 186 241 5 8
6 129 207 241 6 9
7 130 190 240 7 11
8 131 177 240 8 14
9 132 172 238 9 18
10 132 149 237 10 19
11 133 162 237 11 21
12 134 204 233 12 21
13 136 215 232 13 21
14 137 123 230 14 21
15 138 166 229 15 22
16 139 168 227 16 22
17 140 135 227 17 22
18 141 142 224 18 24
19 141 177 221 19 26
20 147 148 221 20 26
21 147 167 221 21 27
22 148 209 221 22 27
23 153 221 220 23 27
24 154 164 218 24 27
25 155 122 216 25 27
26 155 140 215 26 27

27 156 157 215 27 28



Lets predict cell growth

We conclude that geneX and gene Z contain useful information for predicting cell growth

Let’s find the predicted cell growth for a sample with an 0.3 average in geneX and 0.6 in geneZ.

The explanatory variables are geneX and geneY. The predicted cell growth is

Cell growth =47 + 0.28geneX -0.003geneY-0.30gene”Z
Cell growth =47 + 0.28gene-0.3geneZ
Cell growth =47 +0.28(0.3) -0.30(0.6)



Logistic Regression
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What is logistic regression?

It is used to determine model parameters when dependent variables are binary rather than
continuous

For example,
cell division, O or 1
Cancer diagnostic, cancer/not

Voting yes/no
Mortality alive/death
Product-marketing, sold/not sold

Arrived/delayed

The results of these data is not continuous as you have seen
in multivariable linear regression

Logistic model can be used to make prediction for binary
results



Logistic Regression

If a response variable such as yes/no or success/failure response variables., we

cannot use linear regression models where it assumes a normal distribution.

Think about a cancer patient diagnosis whether a patient either have a cancer or

not a cancer

One type of model that can be used i1s called logistic regression. We think in
terms of a binomial model for the two possible values of the response variable

and use one or more explanatory variables to explain the probability of success.

P(Y=1|beta)= exp(b(1)+b(2)x) / 1+exp(b(1)+b(2)x)

X= binary or cont

y= binary

b(1) and b(2) are coefficients



if y response variable is discrete
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Solutions: Logistic regression
Logistic regression is the best model if response variable is binomial. Because it uses a fitting
method that is appropriate for the binomial distribution.

Predicted proportions/probability values are present in the range from O to 1.
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In matlab we use glmfit function to fit our data to a logistic model
This function returns coefficient estimates for a linear
regression of the responses Y (f(x)) on the

independent variable X



In Matlab,

slogistic regression

[logitCoef,dev,stats] = glmfit (geneX, [cancer
tested], "binomial', "logit');



geneX = [2180 2450 2640 2730 3100 3120 3320 3610 3800
% The number of patients tested at each levels (intervals)
tested = [57 44 37 33 30 22 21 23 19 16 18 21]’;

% The number of cancer patients at each test [ 585 F| o T[CV &) logitCoet
cancer=[12248814 17 17 1517 21]; C1 2x1 double
1 2 3 4 5
1 -12.6748
%logistic regression 2 03867
3
[logitCoef,dev,stats] = gimfit(geneX,[cancer tested],'binomial’,'logit'); 4

logitFit = glmval(logitCoef,geneX,'logit);

figure(3)
plot(geneX,proportion,'bs’, geneX,logitFit,'r-",'markersize’,16);

Glmval is uses to compute the predicted values for the model
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glmfint: Logistic model coefficients

| stats I logitFit I dev | logitCoef
1 2%1 double
1 2 3 4 5
1 -12.6748
2 03867
3
A
stats logitFit '_ dev | logitCoef

&l 1x1 struct with 15 fields

Field -
H beta
HH dfe
HH sfit
Hs
] estdisp
ij covb
H se
] coeffcorr
HHt
Hp
Uj resid
HH residp
1 residd
Hj resida
H wts

Value

[-12 6748;0.3867)

10

0.5951

1

0
[1.6374,-0.0508;-0.0508 0.. .
[1.2796;0.0400]
[1,-0.9907.-0.9907 1]
[-9.9053;9.6573]
[3.9472e-23.4 5T767e-22]
12x% 71 double

12x1 double

12x7 double

12x71 double

12x 1 double



P(Y=1|beta)= exp(b(1)+b(2)x) / 1+exp(b(1)+b(2)x)

% prediction by using logistic model
% given that patient has an average RNA level from isolated cells
genepredict=40

% what is the risk of having cancer?
% model equation
cancerriskpro=exp(logitCoef(1)+genepredict*logitCoef(2))/(1+exp(logitCoef(1)+genepredil
% probability

disp(cancerriskpro)

figure(3)

plot(geneX proportion,'bs’', geneX logitFit, r-',' markersize',16);
hold on

plot(genepredict,cancerriskpro, mo’,'markersize’,34);
xlabel('geneX’);

ylabel('Probability’);

set(gca, fontsize',18)
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Coefficients are estimated by using a maximum likelihood estimation method where
coefficients maximizes the prediction of observed values in the data
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points on a line represents the highest points in the
probability distribution

log(odds) = bo+ bix =—12.12+ 0.45x



The effect of coefficients on the shape of logistic model
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