## Introduction to Scientific Computation 113E



Assc. Prof. Halil Bayraktar
Lecture 4

## The relational operators in MATLAB are:

$>$ greater than
< less than
>= greater than or equals
<= less than or equals
== equality
$\sim=$ inequality
The logical operators are:
| or for scalars
\& and for scalars
~ not (tilde symbol)

## For loop

- Used to repeat the computation within the loop

```
% for loops
x=1:1:100
y=reshape(x,10,10)
for i=1:10
    y(i,1)=i+5
end
```

\% repeating with tor loops


```
%%%
for i=1:5
    x=0:1:20
y=x. }\mp@subsup{}{}{\prime}(1/\textrm{i}
y1=x.^(i)
figure(1)
plot(x,y)
hold on
plot(x,y1)
axis([0 20 0 20])
hold on
end
```

```
for i=1:100;
    disp(i)
    fprintf('%f',i)
    disp('matlab')
    x(i,1)=i
    x(i,2)=sqrt(i)
    end
```

geneA='attgta' geneB='attcta' res1=geneA==geneB

$[r, c, u]=$ find $($ geneA $\sim=g e n e B)$
geneD=[geneA,geneB,geneA,'ccc']
save('geneD','geneD')


## Example : Search a region of nucleotides

```
x='acgc'
y='atgg'
z=x==y
[r,c,l]=find (z==0)
disp(c)
%%
x='atcg'
chr1='
arrChr={}
for j=1:10;
for i=1:10000;
    num=randi([1,4],1,1);
    chr1=[chr1,x(num)];
end
arrChr{j,1}=chr1
    chr1='
end
disp(chr1)
%%
targetsequence='ggcgg'
k=strfind(arrChr{6,1} ,targetsequence )
disp(k)
%%
targetregion={}
targetsequence='ctgg'
for i=1:10
k=strfind(arrChr{i,1} ,targetsequence )
disp(k)
targetregion{i,1}=k
end
```


## Applications of relational operators: Find an information in an array

returns the row and column indices of non-zero entries in a matrix.

$a=$ find $(x>7)$
[row,col, v]=find ( $x>7$ )
row =
ans = 3
2
6 3
$\mathrm{col}=$
2
3
3
$\mathrm{v}=$
$3 \times 1$ logical array

## And, or and not operator

- And, \&
- Or, |
- Not equal, ~=

$x=\operatorname{randi}([1,100], 100,1)$
$y=\operatorname{randi}([1,100], 100,2)$
$\% \%$
$[r, c, 1]=$ find $(x>20 \& x<40)$
$[r, c, 1]=$ find $(y(-, 1)<5 \mid y(-, 2)<5)$
\% \%
$[r, c, 1]=$ find $(x \sim=13)$
$[r 1, \mathrm{c}, \mathrm{l}]=$ find $(\mathrm{x} \sim=[13,20,89])$ )
$[r 1, c, l]=$ find $(x \sim=13 \& x \sim=20)$


## Exampe 2: Compare genes and find unmatched nucleotides

## geneA='AAAATAGTAGATGATGATGATGTCCATATAT' geneB='AAAATATGTAATTGTATGGATGTCCATATAT' [row,col,v]=find(geneA~=geneB)

Compare data with logic operators
"red fluorescent" probes "green fluorescent" probes


- only expressed in healthy cells
- only expressed in cancerous cells


## \%

x=find(geneA>90 \& geneB>90 \& geneC<90) geneA(x,1) geneB(x,1) geneC(x,1)


## A genome sequence with for loop

We need 4 letters
\%\%
letters=['a','g','c', 't']
genex="

$$
\exists \text { for } i=1: 100
$$

$$
a=\operatorname{randi}([1,4], 1,1)
$$

genex(i)=letters(a)
end


How can we imagine Arrays in 2D? Can we print Love with many colors? Can we print mant of them?



## Can we organize arrays with different ways?

|  |  |
| :---: | :---: |


| \|l|l|wa | \|l|l|w제 | Iniwa | \|niwa | Iniwa | Inix) |  | Iniwa |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \|l|l|wa | \|l|l|w제 | InIIW: | [1010] | [a\|way | InIW]: | \|l|l|lud | InIW] |
| \|l|l|wa | [1]10께 | InIW: | Iniwa | Iniwa | Iniwa |  | Iniwa |
| \|l|l|wa |  | InIIW: | [1010] | [a\|way | InIW]: | Iatix ${ }^{\text {a }}$ | Inixy |
| \|l|l|wa |  | InIW] | Iniwa | Iniwa | Inix) |  | Inixy |
| \|l|l|w |  | Iniwn | \|nlwa | 191was | \|l|lwa | \|l|l|wa | 1anwa |
| \|n|w] | \|l|l|w | InIW: | \|h100] | [a\|wa | InIW] | InILIN: | [1]150: |



```
arr=zeros(100,100)
fori=1:10:100
    arr(i:i+8,1:20)=k
    %arr(i:i+4,30:32)=k(1:5,7:9)
```

end
figure(4)
\%\%
imshow(arr,[],'initialmagnification',1200)
hold on
colormap jet

## Lets do fun with circshift, rolling the writings: Design an animation for film credits



## Circle data in rows and columns



## Sorting rows

examscores
$94 \quad 60$
$\begin{array}{rr}65 & 88 \\ 80 & 82 \\ 100 & 77\end{array}$
$67 \quad 81$
9570
6297
6588
$76 \quad 74$
$60 \quad 65$
sortrows(examscores)

| ans $=$ |  | ans $=$ |  |
| ---: | ---: | ---: | ---: |
| 60 | 65 | 94 | 60 |
| 62 | 97 | 60 | 65 |
| 65 | 88 | 95 | 70 |
| 65 | 88 | 76 | 74 |
| 67 | 81 | 100 | 77 |
| 76 | 74 | 67 | 81 |
| 80 | 82 | 80 | 82 |
| 94 | 60 | 65 | 88 |
| 95 | 70 | 65 | 88 |
| 100 | 77 | 62 | 97 |

$$
\begin{array}{rl}
\text { ans }= \\
& \\
94 & 60 \\
60 & 65 \\
95 & 70 \\
76 & 74 \\
100 & 77 \\
67 & 81 \\
80 & 82 \\
65 & 88 \\
65 & 88 \\
62 & 97
\end{array}
$$

sortrows(examscores,2)

## Data sorting

sort the elements of each column in a particular order. examscores =
$\begin{array}{llllllllll}98 & 76 & 71 & 83 & 70 & 85 & 89 & 83 & 71 & 63\end{array}$
sort(x,'ascend') ans =
$\begin{array}{llllllllll}63 & 70 & 71 & 71 & 76 & 83 & 83 & 85 & 89 & 98\end{array}$
sort(x,'descend')
ans =
$\begin{array}{llllllllll}98 & 89 & 85 & 83 & 83 & 76 & 71 & 71 & 70 & 63\end{array}$

## Reshaping a Matrix

The number of rows and columns in a matrix can be changed provided the total number of elements remains the same.
a=randi $([1,10], 3,3)$
b=reshape(a,9,1)


$$
\begin{array}{ccc}
8 & 5 & 7 \\
108 & 10 \\
9 & 9 & 10
\end{array}
$$

## 810958971010

Finding anomaly in the data. This is an harder problem for teaching the computer to find the outliers.

$$
a=[5,8,3,6,7,200,10,12,295,34,250]
$$

## $\begin{array}{lllllllllll}\mathrm{b}=3 & 5 & 6 & 7 & 8 & 10 & 12 & 34 & 200 & 250 & 295\end{array}$

You should take the first derivative of the function. How can you take the first derivative with matlab (circshift)?

Protocol: 1. sort the data
2. take the first derivative
3. Find the max and its index number
4. Use the index number and find the subdata?

\% finding the outliers numbers in the data sets \%
$a=[5,8,3,6,7,200,10,12,295,34,250]$
$b=\operatorname{sort}(a)$
$\mathrm{c}=\mathrm{circshift}(\mathrm{b},-1)$
\% derivative
$d=c-b \mid$
$\mathrm{k}=\mathrm{max}(\mathrm{d})$
\% \%
$\mathrm{k} 1=$ find $(\mathrm{d}==\mathrm{k})$
asub=b(1,1:k1)



saveas(gcf,'firstfigure.png') saveas(figure(1),'firstfigure.jpg') saveas(figure(1),'firstfigure.tif')

## Bar plots



```
GPA = [2.5,3.1,3.2,3.42]
year1={'Freshman','Sophomore','Junior','Senior'}
figure(1)
bar(GPA,|r')
xticklabels(year1)
xtickangle(45)
ylabel('GPA')
set(gca,'Fontsize',24)
box off
xticklabels(year1)
ylabel('GPA')
saveas(figure(1),'studentsgradesaverage.pdf')
```


## Stacking or grouping bars

$m R N A=[18 \mid 3030 ; 295060 ; 218090 ; 25110120]$

\%\%
figure(6)
subplot(1,3,1)
bar(mRNA,'stacked')
set(gca,'Fontsize',24)
\% adding a legend
legend('293T','Hela','RPE','Location','Northwest')
trialname=\{'Tr1','Tr2','Tr3','Tr4'\}
xticklabels(trialname)
xtickangle(45)
ylabel('mRNA (\muM)')
\%
subplot(1,3,2)
h=bar(mRNA,'stacked')
trialname=\{'Tr1','Tr2','Tr3','Tr4'\}
xticklabels(trialname)
\%xtickangle(45)
legend('Location','Northwest');
set(h(1),'DisplayName','293T','Facecolor', [0 0.111$])$
set(h(2),'DisplayName','Hela','Facecolor',[10 1 001$]$ )
set(h(3),'DisplayName','RPE','Facecolor',[1 0.7 0.6]) set(gca,'Fontsize',22) \%
%
%
subplot(1,3,3)
subplot(1,3,3)
bar(mRNA ,'grouped')
bar(mRNA ,'grouped')
set(gca,'Fontsize',22)
set(gca,'Fontsize',22)
labels = {'293T','Hela','RPE'};
labels = {'293T','Hela','RPE'};
legend(labels,'Location','NorthWest');
legend(labels,'Location','NorthWest');

## Histogram plot



```
CAalisuUies(1.\angleUU,\angle)- Ialiul\[JU,IU],\angleUU, I)
```

\% \%
[counts,edges]=histcounts(examscores,6)
\%\%
figure(6)
h=histogram(examscores(:,1:2),6)
set(gca,'Fontsize',30)
xlabel('Examscore')
ylabel('Student count')
set(h,'Facecolor',[10 000$]$ )

Other graphics: draw a circle with matlab



## Drawing a sphere



```
%%
N = 20;
thetavec = linspace(0,pil, N);
phivec = linspace(0,2*pi,2*N);
[th, ph] = meshgrid(thetavec,phivec);
R = ones(size(th));
x = R.**sin(th).*}\operatorname{cos}(\textrm{ph})
y = R. ** }\operatorname{sin}(th).**\operatorname{sin}(ph)
z = R/1.* cos(th);
figure(3)
surf(x,y,z);
```


## Linear Regression



## Scatter plot

Shows the relation between two variables



Can we quantitatively measure the strength of relationship between variables?

Covariance
Does Y get larges (smalleR) as Y increase?


Covariance $>0$ if $\underline{X}$ and $\underline{Y}$ variables gets larger
Covariance $<0$ if X and Y variables moves opposite direction

## Correlation (r)

- measures the direction and strength of relationship between two quantitative variable. - The correlation $r$ measures the direction and strength of the linear (straight line) association between two quantitative variables $x$ and $y$.
- Although you can calculate a correlation for any scatterplot, $r$ measures only linear relationships.
$\begin{aligned} \Psi=\frac{1}{n-1} \sum\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right) \quad r & =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)(\eta-\bar{y})}{\sqrt{\left(\sum_{i-1}^{n}\left(x_{i}-\bar{i}\right)^{2}\right)\left(\sum_{i-1}^{n}\left(p_{i}-\bar{y}\right)^{2}\right)}} \\ & =\frac{1}{n-1} \cdot \frac{\sum_{i-1}^{n_{i}}\left(x_{i}-\bar{x}\right)\left(m_{i}-\bar{y}\right)}{s_{x} s_{y}}\end{aligned}$


## close to $\mathrm{n}-1$ if x and y have

$x^{-}=$the sample mean of $x_{1}, \ldots, x_{n}$,
$y^{-}=$the sample mean of $y_{1}, \ldots, y_{n}$,
$\mathrm{s}_{\mathrm{x}}=$ the standard deviation of $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$,
$s_{y}=$ thestandarddeviationofy ${ }_{1}, \ldots, y_{n}$.

## Correlation sets



Remember that correlation coefficient is an indicator of the strength of a linear relationship between two variables, but its value generally does not completely characterize their relationship

## Summary of Correlation between two variables

- $-1 \leq r \leq 1$ always
- $r=1$ when all the points $\left(x_{i}, y_{i}\right)$ lie on a line with positive slope
- $r=-1$ when all the points $\left(x_{i}, y_{i}\right)$ lie on a line with negative slope
- When $r=0$, then there is no positive or negative linear association between the two variables (though the two variables may have a non-linear relationship).


## Fitlm and polyfit functions

```
b = fitlm(hist',genetrial')
```

| New to MATLAB? See resources for Getting Started. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{y} \sim 1+\mathrm{x} 1$ |  |  |  |  |
| Estimated Coefficients: |  |  |  |  |
|  | Estimate | SE | tStat | pValue |
| (Intercept) | 42.933 | 2.1767 | 19.724 | $4.544 \mathrm{e}-08$ |
| x1 | 3.2303 | 0.35081 | 9.2082 | $1.5659 \mathrm{e}-05$ |

```
    Number of observations: 10, Error degrees of freedom: 8
    Root Mean Squared Error: 3.19
    R-squared: 0.914, Adjusted R-Squared: 0.903
    F-statistic vs. constant model: 84.8, p-value = 1.57e-05
fx >>
```

[co,S]=polyfit(hist,genetrial,1)
$\mathrm{co}=$
$3.2303 \quad 42.9333$
$s=$
struct with fields:
R: [ $2 \times 2$ double]
df: 8
normr: 9.0124

