Introduction to Scientific Computation 113E

	ariables - data1	1									\odot
	corr_coef_y 🛛 🛛	allmeansda	ta ≍ p_va	lue_o 🛛 d	ata1 🛛						
2	7130x34 <u>table</u>										
	1 Gene	2 ARNA	3 TRNA	4 ARNA1	5 TRNA1	6 ARNA2	7 TRNA2	8 ARNA3	9 TRNA3	10 TRNA4	11 TRNA5
1	"LOC1024	0	1.0045	4.0185	0.9162	2.9799	3.3377	1.3212	2.1511	1.0805	
2	"ZBTB42"	27.8394	37.1676	55.2547	30.2348	42.7112	32.2643	54.1705	48.3991	35.6578	50.26
}	"FCAMR"	1.1136	0	1.0046	0	0.9933	0	0	0	0	
Ļ	"ZNF503	41.2024	35.1586	40.1853	16.4917	35.7582	32.2643	60.7767	23.6618	47.5438	40.84
;	"NFU1"	111.3578	123.5573	118.5465	133.7663	91.3821	86.7800	76.6315	120.4600	100.4903	68.07
6	"ELSPBP1"	0	0	0	0	0	0	0	0	0	
,	"ZRANB3"	190.4218	183.8291	141.6531	169.4984	155.9455	92.3428	118.9109	121.5355	152.3563	102.63
3	"MECR"	259.4637	291.3139	188.8708	237.2977	289.0455	189.1358	257.6403	253.8264	347.9341	271.24
)	"LOC1057	0	0	0	0	0	0	0	0	0	
10	"LINC003	2.2272	2.0091	3.0139	4.5810	6.9530	0	0	0	1.0805	4.18
1	"AARSD1"	1.1136	0	0	0	0	2.2251	0	0	0	
12	"DEXI"	485.5200	435.9663	492.2695	308.7619	511.5410	493.9782	478.2860	357.0779	467.8742	569.72
3	"DCHS1"	1.1559e+03	1.0035e+03	1.2116e+03	1.3138e+03	1.3479e+03	1.4652e+03	1.8788e+03	1.4842e+03	1.7224e+03	1.2724e+
4	"PSMD2"	1.2550e+03	1.8232e+03	1.3914e+03	1.4861e+03	1.5545e+03	1.3206e+03	1.5630e+03	1.1282e+03	1.4382e+03	1.5730e+
5	"GABRR1"	3.3407	4.0181	2.0093	1.8324	5.9597	8.9005	6.6062	2.1511	2.1611	4.18
16	"PKNOX2"	780.6181	676.0491	640.9550	244.6274	522.4672	406.0857	486.2134	287.1680	504.6126	799.07
17	"TIPARP"	309.5747	294.3275	372.7184	721.0553	238.3881	354.9078	395.0484	379.6641	298.2293	273.34
18	"ADAM20"	113.5849	91.4123	74.3427	89.7883	100.3216	160.2091	104.3773	73.1364	63.7519	97.39
19	"LOC2847	0	0	0	0	0	0	0	0	0	
20	"MIR4715"	0	0	0	0	0	1.1126	0	0	0	>

Assc. Prof. Halil Bayraktar Lecture 4 The relational operators in MATLAB are:

- > greater than
- < less than
- >= greater than or equals
- <= less than or equals
- == equality
- ~= inequality

The logical operators are:

- or for scalars
- & and for scalars
- ~ not (tilde symbol)

For loop

• Used to repeat the computation within the loop

geneA='attgta' geneB='attcta' res1=geneA==geneB

```
res1 =
    1×6 logical array
    1 1 1 0 1 1
fx >>
```

```
== egual
~= not equal
```

۲	1	🔏 Variables - c								
-		∫ c × [
	1x1 double									
		1	2	3	4					
	1	4								
	2									
	3									
	4									

[r,c,u]=find(geneA~=geneB)

geneD=[geneA,geneB,geneA,'ccc']

```
save('geneD','geneD')
```

geneD=[geneA,geneB,geneA,'ccc']	
save('generesults','geneD')	
%%	
% do not work	
geneD=geneA+geneB	
%%	
nucleotide='atcg'	
%%	
chr1="	
<pre> for i=1:10000 x=randi([1,4],1,1) chr1=[chr1,nucleotide(x)] end 0/ 0/ </pre>	
%%	
%[r,c,u]=find(geneA=='att') k = strfind(chr1,'ttatttt') disp(chr1(2549:2560))	
0/ 0/	

Example : Search a region of nucleotides

3		
4 -	x='acgc'	
5 -	y <mark></mark> ≓'atgg'	
6 -	z <mark>=</mark> x==y	
7 -	[r,c,l]=find(z==0)	
8 -	disp(c)	
9	%%	
10 -	x='atcg'	
11 -	chr1 <mark>=</mark> "	
12 -	arrChr <mark>=</mark> {}	
13 -	📮 for j=1:10 <mark>;</mark>	
14 -	🖻 for i=1:10000 <mark>;</mark>	
15 -	num=randi([1,4],1,1);	
16 -	<pre>chr1=[chr1,x(num)];</pre>	
17		
18 -	- end	
19 -	arrChr{j,1}=chr1	
20 -	chr1="	
21 -	- end	
22 -	disp(chr1)	
23	%%	
24 -	targetsequence='ggcgg'	
25 -	k=strfind(arrChr{6,1},targetsequence)	
26 -	disp(k)	
27	%%	
28 -	targetregion={}	
29 -	targetsequence='ctgg'	
30 -	☐ for i=1:10	
31 -	k=strfind(arrChr{i,1},targetsequence)	
32 -	disp(k)	
33 -	targetregion{i,1}=k	
34		
35 -	L end	
36		
37		

Applications of relational operators: Find an information in an array

returns the row and column indices of non-zero entries in a matrix.

1 2 2	a=find(x>7)	[row,col,v]=find(x>7)
4 6 9		row =
1 109	ans =	3
		2
	6	3
	8	col =
	9	2
		3
		3
		V =
		3×1 logical array
		1
		1
		1

And, or and not operator

- And, &
- Or, |
- Not equal, ~=

015p(0111(2045.2000)) %%

x=randi([1,100],100,1) y=randi([1,100],100,2)

%% [r,c,l]=find(x>20 & x<40) [r,c,l]=find(y(:,1)<5 | y(:,2)<5)

%% [r,c,l]=find(x~=13) [r1,c,l]=find(x~=[13,20,89]) [r1,c,l]=find(x~=13 & x~=20) Exampe 2: Compare genes and find unmatched nucleotides

geneA='AAAATAGTAGATGATGATGATGTCCATATAT' geneB='AAAATATGTAATTGTATGGATGTCCATATAT' [row,col,v]=find(geneA~=geneB)

Compare data with logic operators

only expressed in healthy cells

- only expressed in cancerous cells
- expressed in both cancerous and healthy cells

geneA=randi(100,1000,1) geneB=randi(100,1000,1) geneC=randi(100,1000,1)

%

x=find(geneA>90 & geneB>90 & geneC<90) geneA(x,1) geneB(x,1) geneC(x,1)

A genome sequence with for loop

How can we imagine Arrays in 2D? Can we print Love with many colors? Can we print mant of them?

% love with colors k=zeros(9,20) k(6,:)=4 k(7,:)=5 k(8,:)=6 k(9,:)=0 %L k(1:5,2)=4 k(5,3:4)=4 %0 k(1:5,7)=2 k(1:5,9)=2 k(1,8)=2 k(5,8)=2 %v k(1:2,11)=3 k(3:4,12)=3 k(5,13)=3 k(1:2,15)=3 k(3:4,14)=3 %E k(1:5,17)=4 k(1,17:19)=4 k(5,17:19)=4 k(3,18)=4 figure(1) subplot(1,2,1)imshow(k,[],'initialmagnification',1200) subplot(1,2,2) imshow(k,[],'initialmagnification',1200) colormap jet %%

for i=1:64;
 figure(1)
 subplot(8,8,i)
 imshow(k,[],'initialmagnification',1200)
 hold on
 colormap jet

- end

70 70

Can we organize arrays with different ways?


```
for i=1:64;
figure(1)
subplot(8,8,i)
imshow(k,[],'initialmagnification',1200)
hold on
colormap jet
```

- end

arr=zeros(100,100) for i=1:10:100 arr(i:i+8,1:20)=k %arr(i:i+4,30:32)=k(1:5,7:9)

end figure(4) %%

imshow(arr,[],'initialmagnification',1200) hold on colormap jet

Lets do fun with circshift, rolling the writings: Design an animation for film credits

	Cast								
Monica Geller Phoebe Buffay Joey Tribbiani Chandler Bing Dr. Ross Geller Gunther Jack Geller	Lisa Kudrow Matt LeBlanc Matthew Perry David Schwimmer James Michael Tyler Elliott Gould	Barry Alice Knight Buffay Mr. Zeiner David Joshua Burgin Janine Lecroix Elizabeth Stevens	Paget Brewster Mitchell Whiteled Debra Jo Rupp Steve Ireland Hank Azaria Tate Donovan El File Edit Al	View Insert	Tools Desktop	Window	Help		
%% figure(4) imshow(k,[], 'initia colormap jet %% k2=k for i=1:20 k2=circshift(k2, figure(4) imshow(k2,[], in colormap jet pause(0.2)	-1)				1				
disp(i) end				1.0%	· · · ·	VE	LOVE	L IIWA	1000

Circle data in rows and columns

Sorting rows

examscores =		sortrows(e	examscores)	sortrows(e	sortrows(examscores,2)		
94	60	ans	=	ans	=		
65	88	60	65	94	60		
80	82	62	97	60	65		
100	77	65	88	95	70		
	••	65	88	76	74		
67	81	67	81	100	77		
95	70	76	74	67	81		
62	97	80	82	80	82		
65	88	94	60	65	88		
76	74	95	70	65	88		
		100	77	62	97		
60	65						

Data sorting

sort the elements of each column in a particular order. examscores =

76 71 83 70 85 89 83 71 98 63 sort(x,'ascend') ans = 63 70 71 71 76 83 83 85 89 98 sort(x,'descend') ans =83 83 76 71 71 85 98 70 89 63

Reshaping a Matrix

The number of rows and columns in a matrix can be changed provided the total number of elements remains the same.

a=randi([1,10],3,3) b=reshape(a,9,1)							
7	2 3 8	2	2 7 1 2 3 8 8 8 2 3				

b=reshape(a,1,9) 8 5 7 108 10 9 9 10 8 109 5 8 9 7 1010 Finding anomaly in the data. This is an harder problem for teaching the computer to find the outliers.

a=[5,8,3,6,7,200, 10, 12, 295, 34, 250]

b = 3 5 6 7 8 10 12 34 200 250 295

You should take the first derivative of the function. How can¹you take the first derivative with matlab (circshift)?

Protocol: 1. sort the data

- 2. take the first derivative
- 3. Find the max and its index number
- 4. Use the index number and find the subdata?


```
% finding the outliers numbers in the data sets
%
a=[5,8,3,6,7,200, 10, 12, 295, 34, 250]
b=sort(a)
c=circshift(b,-1)
% derivative
d=c-b|
k=max(d)
%%
k1=find(d==k)
asub=b(1,1:k1)
```


saveas(gcf,'firstfigure.png')
saveas(figure(1),'firstfigure.jpg')
saveas(figure(1),'firstfigure.tif')

Bar plots

GPA = [2.5,3.1,3.2,3.42] year1={'Freshman','Sophomore','Junior','Senior'} figure(1) bar(GPA,|r') xticklabels(year1) xtickangle(45) ylabel('GPA') set(gca,'Fontsize',24) box off

xticklabels(year1)

ylabel('GPA')

saveas(figure(1),'studentsgradesaverage.pdf')

Stacking or grouping bars

mRNA = [18 30 30; 29 50 60; 21 80 90; 25 110 120];

%%

figure(6) subplot(1,3,1) bar(mRNA, 'stacked') set(gca,'Fontsize',24) % adding a legend legend('293T','Hela','RPE','Location','Northwest') trialname={'Tr1','Tr2','Tr3','Tr4'} xticklabels(trialname) xtickangle(45) ylabel('mRNA (\muM)') % subplot(1,3,2)h=bar(mRNA,'stacked') trialname={'Tr1','Tr2','Tr3','Tr4'} xticklabels(trialname) %xtickangle(45) legend('Location','Northwest'); set(h(1),'DisplayName','293T','Facecolor',[0 0.1 1]) set(h(2),'DisplayName','Hela','Facecolor',[1 0 1]) set(h(3), 'DisplayName', 'RPE', 'Facecolor', [1 0.7 0.6]) set(gca,'Fontsize',22) %

%

subplot(1,3,3) bar(mRNA ,'grouped') set(gca,'Fontsize',22) labels = {'293T','Hela','RPE'}; legend(labels,'Location','NorthWest');

Histogram plot

examscores(1.200,2)= rand([50,70],200,1)
%%
[counts,edges]=histcounts(examscores,6)
%%
figure(6)
h=histogram(examscores(:,1:2),6)
set(gca,'Fontsize',30)
xlabel('Examscore')
ylabel('Examscore')
ylabel('Student count')
set(h,'Facecolor',[1 0 0])

0/ 0/

Other graphics: draw a circle with matlab

Drawing a sphere

 $(r, \theta, \varphi) \longrightarrow y = r \sin\varphi \cos\theta$ $z = r \cos\varphi$

%%

N = 20; thetavec = linspace(0,pi|,N); phivec = linspace(0,2*pi,2*N); [th, ph] = meshgrid(thetavec,phivec); R = ones(size(th)); x = R.*sin(th).*cos(ph); y = R.*sin(th).*sin(ph); z = R/1.*cos(th);

figure(3) surf(x,y,z);

Linear Regression

Scatter plot

Shows the relation between two variables

Can we quantitatively measure the strength of relationship between variables?

Covariance

Covariance > 0 if X and Y variables gets larger

Covariance < 0 if X and Y variables moves opposite direction

Correlation (r)

- measures the direction and strength of relationship between two quantitative variable.
- The correlation r measures the direction and strength of the linear (straight line) association between two quantitative variables x and y.
- Although you can calculate a correlation for any scatterplot, r measures only linear relationships.

$$\mathbf{x} = \frac{1}{n-1} \sum \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right) \qquad \qquad r = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2)(\sum_{i=1}^n (y_i - \bar{y})^2)}}{= \frac{1}{n-1} \cdot \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{s_x s_y}}$$

close to n-1 if x and y have

x⁻= the sample mean of $x_1,...,x_n$, y⁻= the sample mean of $y_1,...,y_n$, s_x = the standard deviation of $x_1, ..., x_n$, s_y = the standard deviation of $y_1,...,y_n$.

Correlation sets

Remember that correlation coefficient is an indicator of the strength of a *linear* relationship between two variables, but its value generally does not completely characterize their relationship

Summary of Correlation between two variables

- $-1 \le r \le 1$ always
- r = 1 when all the points (x_i, y_i) lie on a line with positive slope
- r = -1 when all the points (x_i, y_i) lie on a line with negative slope

 When r = 0, then there is no positive or negative linear association between the two variables (though the two variables may have a non-linear relationship).

Fitlm and polyfit functions

b = fitlm(hist',genetrial')

New to MATLAB? See resources for Getting Started.

y ~ 1 + x1

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	42.933	2.1767	19.724	4.544e-08
x1	3.2303	0.35081	9.2082	1.5659e-05

Number of observations: 10, Error degrees of freedom: 8 Root Mean Squared Error: 3.19 R-squared: 0.914, Adjusted R-Squared: 0.903 F-statistic vs. constant model: 84.8, p-value = 1.57e-05

[co,S]=polyfit(hist,genetrial,1)

```
co =
    3.2303    42.9333
S =
    struct with fields:
        R: [2×2 double]
        df: 8
        normr: 9.0124
```