# Introduction to Scientific Computation

# Halil Bayraktar Lecture 10 –Logistic Regression/Machine Learning











## Correlation coefficient always lies between -1 to +1

# Correlation of difference genes



# MULTIVARIATE REGRESSION

- y dependent variable or also called response variable
- $x_1, x_2, x_3, \dots, x_n$  are called independent variables

or explanatory variables.

• X values can either quantitative or categorical.

 $Y = \text{constant} (a) + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 \dots + \beta_k x_n$ 

# Dependence of cell growth to expression of geneX, geneY and geneZ

Linear regression model:  $\underline{y} \sim 1 + x1 + x2 + x3$ 

Estimated Coefficients:

|             | Estimate   | SE        | tStat    | pValue     |
|-------------|------------|-----------|----------|------------|
| (Intercept) | 47.153     | 26.499    | 1.7794   | 0.078342   |
| x1          | 0.28602    | 0.069679  | 4.1048   | 8.4971e-05 |
| x2          | -0.0033967 | 0.0047938 | -0.70856 | 0.48031    |
| x3          | -0.3098    | 0.071258  | -4.3476  | 3.4254e-05 |



```
Number of observations: 100, Error degrees of freedom: 96
Root Mean Squared Error: 1.74
R-squared: 0.994, Adjusted R-Squared 0.993
F-statistic vs. constant model: 4.95e+03, p-value = 4.52e-105
>>
```

Cell growth = 47 + 0.28 geneX -0.003 geneY-0.30 geneZ

Example 2.

# Dependence of fuel consumption to car features (weight, horse power, model year etc.)





Linear regression model:  $y \sim 1 + x1 + x2 + x3$ 

Estimated Coefficients:

|   |             | Estimate  | SE       | tStat     | pValue             |
|---|-------------|-----------|----------|-----------|--------------------|
|   |             |           | <u> </u> |           |                    |
| / | (Intercept) | 47.977    | 3.8785   | 12.37     | 4.8957e-21         |
|   | <b>x1</b>   | -6.5416   | 1.1274   | -5.8023   | 9 <u>.8742e-08</u> |
|   | x2          | -0.042943 | 0.024313 | -1.7663   | 0.08078            |
|   | x3          | -0.011583 | 0.19333  | -0.059913 | 0.95236            |
| _ | $\sim$      |           |          |           |                    |



Number of observations: 93, Error degrees of freedom: 89 Root Mean Squared Error: 4.09 R-squared: 0.752, Adjusted R-Squared 0.744 F-statistic vs. constant model: 90, p-value = 7.38e-27

A one-unit difference in the rating of weight corresponds to a 6.5 point difference in fuel

#### consumption.

# Logistic Regression

If a response variable such as yes/no or success/failure response variables., we cannot use linear regression models where it assumes a normal distribution. Think about a cancer patient diagnosis whether a patient either have a cancer or not a cancer

One type of model that can be used is called **logistic regression.** We think in terms of a binomial model for the two possible values of the response variable and use one or more explanatory variables to explain the probability of success.

$$P(Y=1|beta) = exp(b(1)+b(2)x) / 1+exp(b(1)+b(2)x)$$

x= binary or cont

y= binary

b(1) and b(2) are coefficients

## Odds Ratio

Odd ration is the ratio of the proportions for binary outcomes. If  $p^{\hat{}}$  is the proportion for one outcome, then  $1 - p^{\hat{}}$  is the proportion for the second outcome:

$$odds = \frac{\hat{p}}{1-\hat{p}}$$

P(pass exam)=0.8 P(fail exam)=0.2

odd(pass)=4

Odd ration of being cancer after seeing biomarker changes

P(cancer)=0.83 Odds ration (cancer)=5 P(not cancer)=0.17

the odds for having cancer is 5 times

the odds for not having cancer after rna sequencing



f(x) or y values always falls in range between 0 and 1f(x) is propability values,

Logistic regression

Statistical model for logistic regression

$$f(x) = \exp(x) / 1 + \exp(x) \longleftrightarrow \log\left(\frac{p}{1-p}\right) = \frac{\beta_0}{p} + \frac{\beta_1 x}{p}$$

$$p = \exp(x) / 1 + \exp(x)$$

Reverse, divide by  $e_{xp(x)}$  and rearrange we got

# p is the probability value beta values are coefficients of the logistic model



**Derivation of log function** 

 $f(x) = \exp(x) / 1 + \exp(x)$ Reverse it  $1/p = 1 + \exp(x) / \exp(x)$ Divide by exp(x)  $1/p = 1 / \exp(x) + 1$ Rearrage formular

D

$$1/p - 1 = 1/\exp(x) + 1 \longrightarrow 1-p/p = 1/\exp(x)$$

$$\rightarrow$$
 p/p-1= exp(x)

Finally, take log of both sides, we got ↓ Log(p/p-1)= b(1)+b(2)x

# Example

We will classify the cells as normal (0) and cancerous 1 if gene expression > 65

Given that we have three variables Exposure to radiation Acidity Reactive molecules

# Logistic regression and cancer risk estimation

This example involves an experiment to help model the various gene expression levels that links to cancer occurence. The data include observations of gene expression, patients tested, and number cancers.



#### TYPES OF GENETIC MUTATIONS IN CANCER

DNA alterations can affect the structure, function, and amount of the corresponding proteins. All of these effects can change a cell's behavior from normal to cancerous. For example, a genetic alteration can intensify or eliminate the protein's function, which could make cells divide uncontrollably. Many different kinds of genetic mutations are found in cancer cells, including missense, nonsense, and frameshift mutations and chromosome rearrangements.



A missense mutation is a change of a single DNA base that results in a change in the amino acid sequence. Sometimes a single amino acid change can greatly alter the protein's function.



A frameshift mutation results from the addition or removal of DNA bases that shifts the DNA sequence and the corresponding amino acid sequence. The result is a protein whose sequence, structure, and function are very different from those of the original protein.



A nonsense mutation is a change of a single DNA base that creates a "stop" codon, which terminates translation. The result is a shortened protein that may not function or that may have an abnormal function.

#### CHROMOSOME REARRANGEMENTS

DNA is wound tighty into structures called chromosomes. Chromosome rearrangements can occur when a piece of a chromosome breaks and is lost entirely (deletion), moves to a different chromosomal location (inversion), or is repeated (duplication). These rearrangements can alter several genes at once. For example, they can generate fusion genes, in which parts of two separate genes are joined together. Proteins made from fusion genes sometimes cause cancer.

lication). rr mple, s, in surve and

cancer.gov/genetics

# Lets fit with a linear model



However there are few problems if we use linear fit:

1) The fit line predicts proportions less than 0 and greater than 1 when proportion geneX level is at very high and low levels

2) Proportions are not normally distributed. This contradicts for fitting a simple linear regression model. It requires normal distribution.

# Lets fit with a polynomial model



1) The fit line predicts proportions goes high and low values when proportion geneX level is at very high and low levels

# Solutions: Logistic regression

Logistic regression is the best model if response variable is binomial. Because it uses a fitting method that is appropriate for the binomial distribution.

Predicted proportions/probability values are present in the range from 0 to 1.



In matlab we use glmfit function to fit our data to a logistic model This function returns coefficient estimates for a linear regression of the responses Y (f(x)) on the independent variable X

# In Matlab,

%logistic regression

[logitCoef,dev,stats] = glmfit(geneX,[cancer tested],'binomial','logit'); geneX = [2180 2450 2640 2730 3100 3120 3320 3610 3800 % The number of patients tested at each levels (intervals) tested = [57 44 37 33 30 22 21 23 19 16 18 21]'; % The number of cancer patients at each test cancer = [1 2 2 4 8 8 14 17 17 15 17 21]';

#### %logistic regression

[logitCoef,dev,stats] = glmfit(geneX,[cancer tested],'binomial','logit'); logitFit = glmval(logitCoef,geneX,'logit');

```
figure(3) plot(geneX,proportion,'bs', geneX,logitFit,'r-','markersize',16);
```

## Glmval is uses to compute the predicted values for the model



|    | stats 🛛 🕹 | logitFit | × |
|----|-----------|----------|---|
| Ŧ  | 12x1 doub | le       |   |
|    | 1         | 2        | 3 |
| 1  | 0.0141    |          |   |
| 2  | 0.0391    |          |   |
| 3  | 0.0782    |          |   |
| 4  | 0.1073    |          |   |
| 5  | 0.3345    |          |   |
| 6  | 0.3519    |          |   |
| 7  | 0.5406    |          |   |
| 8  | 0.7831    |          |   |
| 9  | 0.8827    |          |   |
| 10 | 0.9308    |          |   |
| 11 | 0.9725    |          |   |
| 12 | 0.9871    |          |   |
| 13 |           |          |   |
| 14 |           |          |   |

|   | stats 🛛 🗶  | logitFit | × dev | × logitC | oef × |
|---|------------|----------|-------|----------|-------|
|   | 2x1 double | 2        |       |          |       |
|   | 1          | 2        | 3     | 4        | 5     |
| 1 | -12.6748   |          |       |          |       |
| 2 | 0.3867     |          |       |          |       |
| 3 |            |          |       |          |       |
| 4 |            |          |       |          |       |

# glmfint: Logistic model coefficients

|     | stats 🚿      | logitFit     | × dev                   | × logitC    | oef × |  |  |  |
|-----|--------------|--------------|-------------------------|-------------|-------|--|--|--|
| H   | 2x1 double   |              |                         |             |       |  |  |  |
|     | 1            | 2            | 3                       | 4           | 5     |  |  |  |
| 1   | -12.6748     |              |                         |             |       |  |  |  |
| 2   | 0.3867       |              |                         |             |       |  |  |  |
| 3   |              |              |                         |             |       |  |  |  |
| А   |              |              |                         |             |       |  |  |  |
|     |              |              |                         |             |       |  |  |  |
| [ ( | stats 🛛      | logitFit     | × dev                   | × logitC    | oef 🔀 |  |  |  |
| E   | 1x1 struct w | ith 15 field | İs                      |             |       |  |  |  |
| Fie | eld 🔺        | Value        | )                       |             |       |  |  |  |
|     | beta         | [-12 6       | 6748 <sup>.</sup> 0 38  | 671         |       |  |  |  |
| H   | dfe          | 10           |                         |             |       |  |  |  |
|     | sfit         | 0.595        | i1                      |             |       |  |  |  |
|     | S            | 1            |                         |             |       |  |  |  |
| ~   | estdisp      | 0            |                         |             |       |  |  |  |
|     | covb         | [1.63]       | 74,-0.050               | 8;-0.0508,0 | )     |  |  |  |
|     | Se           | [1.27        | 96;0.0400               | ]           |       |  |  |  |
|     | coeffcorr    | [1,-0.       | [1,-0.9907;-0.9907,1]   |             |       |  |  |  |
|     | t            | [-9.90       | [-9.9053;9.6573]        |             |       |  |  |  |
|     | р            | [3.94]       | [3.9472e-23;4.5767e-22] |             |       |  |  |  |
|     | resid        | 12x1         | 12x1 double             |             |       |  |  |  |
|     | residp       | 12x1         | 12x1 double             |             |       |  |  |  |
|     | residd       | 12x1         | 12x1 double             |             |       |  |  |  |
|     | resida       | 12x1         | double                  |             |       |  |  |  |
|     | wts          | 12x1         | 12x1 double             |             |       |  |  |  |

| esiua | IZAI | uouble |
|-------|------|--------|
| vts   | 12x1 | double |

```
P(Y=1|beta) = exp(b(1)+b(2)x) / 1+exp(b(1)+b(2)x)
```

% prediction by using logistic model % given that patient has an average RNA level from isolated cells genepredict=40

% what is the risk of having cancer? % model equation cancerriskpro=exp(logitCoef(1)+genepredict\*logitCoef(2))/(1+exp(logitCoef(1)+genepredia % probability disp(cancerriskpro) figure(3) plot(geneX,proportion,'bs', geneX,logitFit,'r-','markersize',16); hold on plot(genepredict,cancerriskpro,'mo','markersize',34); xlabel('geneX'); ylabel('Probability'); set(gca,'fontsize',18)



Coefficients are estimated by using a maximum likelihood estimation method where coefficients maximizes the prediction of observed values in the data



 $\log(\text{odds}) = b_0 + b_1 x = -12.12 + 0.45x$ 

## The effect of coefficients on the shape of logistic model



# Maximum likelihood estimation

Estimation parameters where the probability of observed data is maximized.

P(Y=1|coeffcients) = exp(b(1)+b(2)x) / 1+exp(b(1)+b(2)x)

Likelihood function

P(y)beta(x)) = (exp(b(1)+b(2)x)) (y) / 1+exp(b(1)+b(2)x)

# Computation of upper and lower limits of coefficients $b_1 \pm z * SE_{b_1} = 0.38 \pm (1.96)(0.04) = X \pm Y$

| %Calculate the 95% confidence limits for the coefficients.<br>LL = stats.beta - 1.96.*stats.se;<br>UL = stats.beta + 1.96.*stats.se;                                            | -15.1828<br>0.3082         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| %<br>%Display the confidence intervals for the coefficients of the model for the relative risk of<br>% confidence intercal for coefficient<br>%lower level<br>LL<br>%upperlevel | UL =<br>-10.1668<br>0.4651 |

1x1 struct with 15 fields

stats

logitFit

| Field -     | Value                     |
|-------------|---------------------------|
| beta 🚽      | [-12.6748;0.3867]         |
| 🛨 dfe       | 10                        |
| 🛨 sfit      | 0.5951                    |
| s           | 1                         |
| 🗹 estdisp   | 0                         |
| - covb      | [1.6374,-0.0508;-0.0508,0 |
| se          | [1.2796;0.0400]           |
| 🗄 coeffcorr | [1,-0.9907;-0.9907,1]     |
| t           | [-9.9053;9.6573]          |
| 🗄 p         | [3.9472e-23;4.5767e-22]   |
| esid        | 12x1 double               |
| 🛨 residp    | 12x1 double               |
| residd      | 12x1 double               |
| 🛨 resida    | 12x1 double               |
| wts         | 12x1 double               |

dev

logitCoef 🛛 🛛

## Now, odds of having cancer increase $(e^{b_1+z*SEb_1}, e^{b_1-z*SEb_1}) = (e^{0.30}, e^{...46}) = (1.36, 1.59)$



$$\log(\text{odds}) = b_0 + b_1 x = -12.12 + 0.38x$$

1. if P = 1.2e-22, we can reject the null hypothesis that  $b_1 = 0$ .

2. We use the estimate  $b_1 = 0.45$  and its standard error  $SE_{b_1} = 0.04$ 

to compute the 95% confidence interval for  $\beta_1$ :

$$b_1 \pm z * SE_{b_1} = 0.38 \pm (1.96)(0.04) = X \pm Y$$

Our estimate of the slope is 0.38 and we are 95% confident that the true value is between 0.30 and 0.46.

For the odds ratio, the estimate is 1.56 and 95% confidence interval is

∞ exp(LL(2)) exp(UL(2))

$$(e^{b_1+z*SE_{b_1}},e^{b_1-z*SE_{b_1}}) = (e^{0.30},e..46) = (1.36, 1.59)$$

The odds of having cancer increase by a factor of 1.56 for each unit increase in the log concentration of gene expression

Prediction of cancer risk with logistic model

Given than geneX results of patient is 33 ug/ml, what is the risk of having disease?



In this experiment we examine how well a drug kills cancer cells.

The explanatory variable is the log concentration of the drug.



We count each cells whether was either killed or alive.



### Interpretation of logistic regression results

 $\log(\text{odds}) = b_0 + b_1 x = -18.64 + 4.25x$ 

1. if P = 0.018, we can reject the null hypothesis that  $b_1 = 0$ .

2. We use the estimate  $b_1 = 4.25$  and its standard error  $SE_{b_1} = 1.428$ 

to compute the 95% confidence interval for  $\beta_1$ :

 $b_1 \pm z * SE_{b_1} = 4.249 \pm (1.96)(1.428) = X \pm Y$ 

Our estimate of the slope is 4.25 and we are 95% confident that

the true value is between 0.24 and 4.26.

For the odds ratio, the estimate is 9.48 and 95% confidence interval is  ${}_{(e^{b_1+z^*SE_{b_1}},e^{b_1-z^*SE_{b_1}})=(e^{0.23588},e^{4.26212})=(1.27, 70.96)}$ 

Conclusion The odds of killing cancer cells increase by a factor of 9.5

for each unit increase in the log concentration of drug



# Multiple logistic regression

The data set includes three gene variables: geneA, geneB, and geneC.

We examined the model where geneA was used to predict the odds.

Do the other explanatory variables contain additional information that will give us a better prediction?

### We use multiple logistic regression.

 $log(odds) = b_0 + b_1 geneA + b_2 geneB + b_3 geneC$ = -14.26 + 0.58 geneA + 0.68 geneB + 3.47 geneC Machine learning with Matlab

It teaches the computer to think like humans. The data is provided and interpret to build a model



- Naïve Bayes lacksquare
- Support Vector machines lacksquare
- **Random Forest**
- **Neuronal Networks**

- Linear Reg
- Logistic Reg
- Gaussian model

# **Unsupervised** learning

- **K**means
- Hidden markov model
- Hieracrhical model •

# Machine learning for biology Alphafold

| Article                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ← C 🖞 https://www.alphafold.ebi.ac.uk A <sup>h</sup> Cli ☆ 🖾 ଓ I Ф 🎓 🕲 😪 …                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Highly accurate protein structure prediction with AlphaFold                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AlphaFold Protein Structure Database Home About FAQs Downloads API                                                                                                                                                                                                                                                                                                      |
| https://doi.org/10.1038/s41586-021-03819-2<br>Received: 11 May 2021<br>Accepted: 12 July 2021<br>Published online: 15 July 2021<br>Open access<br>Check for updates | John Jumper <sup>1,415]</sup> , Richard Evans <sup>1,4</sup> , Alexander Pritzel <sup>1,4</sup> , Tim Green <sup>1,4</sup> , Michael Figurnov <sup>1,4</sup> ,<br>Olaf Ronneberger <sup>1,4</sup> , Kathryn Tunyasuvunakool <sup>1,4</sup> , Russ Bates <sup>1,4</sup> , Augustin Židek <sup>1,4</sup> ,<br>Anna Potapenko <sup>1,4</sup> , Alex Bridgland <sup>1,4</sup> , Clemens Meyer <sup>1,4</sup> , Simon A. A. Kohl <sup>1,4</sup> ,<br>Andrew J. Ballard <sup>1,4</sup> , Andrew Cowie <sup>1,4</sup> , Bernardino Romera-Paredes <sup>1,4</sup> , Staliasu Nikolov <sup>1,4</sup> ,<br>Rishub Jain <sup>1,4</sup> , Jonas Adler <sup>1</sup> , Trevor Back <sup>1</sup> , Stig Petersen <sup>1</sup> , David Reiman <sup>1</sup> , Ellen Clancy <sup>1</sup> ,<br>Michal Zielinsk <sup>1</sup> , Martin Steinegger <sup>2,3</sup> , Michalina Pacholska <sup>1</sup> , Tamas Berghammer <sup>1</sup> ,<br>Sebastian Bodenstein <sup>1</sup> , David Silver <sup>1</sup> , Oriol Vinyals <sup>1</sup> , Andrew W. Senior <sup>1</sup> , Koray Kavukcuoglu <sup>1</sup> ,<br>Pushmeet Kohli <sup>1</sup> & Demis Hassabis <sup>1,415</sup><br>Proteins are essential to life, and understanding their structure can facilitate a<br>mechanistic understanding of their function. Through an enormous experimental<br>effort <sup>1,4</sup> , the structures of around 100,000 unique proteins have been determine <sup>4</sup> , but<br>this represents a small fraction of the billions of known protein sequences <sup>4,5</sup> . Structural<br>coverage is bottlenecked by the months to years of painstaking effort required to<br>determine a single protein structure. Accurate computational approaches are needed<br>to address this gap and to enable large-scale structural bioinformatics. Predicting the<br>three-dimensional structure that a protein will adopt based solely on its amino acid<br>sequence—the structure prediction component of the 'protein folding problem <sup>6</sup> —has<br>been an important open research problem for more than 50 years <sup>9</sup> . Despite recent<br>progress <sup>10-14</sup> , existing methods fall far short of atomic accuracy, especially when no<br>homologous structure is available. Here we provide the first computational method | AlphaFold         Protein Structure Database         Developed by Google DeepMind and EMBL-EBI         Search for protein, gene, UniProt accession or organism or sequence search         Examples:       MENFOKVEKIGEGTYGY         Yete fatty acid receptor 2       Atg58602       Q5VS12         See search help       Go to online course       Image: Course Course |
|                                                                                                                                                                     | no similar structure is known. We validated an entirely redesigned version of our neural<br>network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein<br>Structure Prediction (CASP14) <sup>51</sup> , demonstrating accuracy competitive with<br>experimental structures in a majority of cases and greatly outperforming other<br>methods. Underpinning the latest version of AlphaFold is a novel machine learning<br>approach that incorporates physical and biological knowledge about protein structure,<br>leveraging multi-sequence alignments, into the design of the deep learning algorithm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                         |

## Machine learning for self driving cars

#### $\leftarrow$ C $\textcircled{https://www.tesla.com/Al$



#### Neural Networks

Apply cutting-edge research to train deep neural networks on problems ranging from perception to control. Our per-camera networks analyze raw images to perform semantic segmentation, object detection and monocular depth estimation. Our birds-eye-view networks take video from all cameras to output the road layout, static infrastructure and 3D objects directly in the top-down view. Our networks learn from the most complicated and diverse scenarios in the world, iteratively sourced from our fleet of millions of vehicles in real time. A full build of Autopilot neural networks involves 48 networks that take 70,000 GPU hours to train . Together, they output 1,000 distinct tensors (predictions) at each timestep.

B ∅ A G ☆ A G ☆ A G ☆ B %



#### Autonomy Algorithms

Develop the core algorithms that drive the car by creating a high-fidelity representation of the world and planning trajectories in that space. In order to train the neural networks to predict such representations, algorithmically create accurate and large-scale ground truth data by combining information from the car's sensors across space and time. Use state-of-the-art techniques to build a robust planning and decision-making system that operates in complicated real-world situations under uncertainty. Evaluate your algorithms at the scale of the entire Tesla fleet.



Example: Hand written recognition Classic problem in machine learning Problem: Can we teach the computer to read the hand written digits ?



# Can you predict the following hand written digit? Is it 1 or 2?



As we humans, computers also make mistakes! How to reduce error rate?

- 1. Use many training samples
- 2. Use many features

# Step 1: Convert the images into a linear form

11000x256 double

|    | 70       | 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 8( |
|----|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| 1  | 0        | 0   | 0   | 39  | 216 | 255 | 245 | 98  | 3   | 0   |    |
| 2  | 0        | 0   | 0   | 117 | 255 | 255 | 255 | 255 | 255 | 255 |    |
| 3  | 0        | 0   | 0   | 0   | 0   | 27  | 231 | 255 | 255 | 114 |    |
| 4  | 0        | 0   | 0   | 0   | 5   | 75  | 238 | 255 | 250 | 222 |    |
| 5  | 0        | 0   | 0   | 0   | 11  | 215 | 224 | 40  | 0   | 0   |    |
| 6  | 0        | 0   | 0   | 0   | 93  | 255 | 255 | 255 | 231 | 69  |    |
| 7  | 0        | 0   | 64  | 103 | 255 | 255 | 255 | 255 | 255 | 255 |    |
| 8  | 0        | 0   | 0   | 0   | 0   | 54  | 226 | 255 | 255 | 255 |    |
| 9  | 0        | 0   | 0   | 0   | 0   | 99  | 255 | 255 | 194 | 9   |    |
| 10 | 0        | 0   | 0   | 0   | 71  | 235 | 234 | 16  | 0   | 158 |    |
| 11 | 0        | 0   | 0   | 0   | 19  | 163 | 252 | 255 | 229 | 70  |    |
| 12 | 0        | 0   | 0   | 0   | 0   | 0   | 212 | 255 | 255 | 255 |    |
| 13 | 0        | 0   | 0   | 0   | 0   | 48  | 230 | 255 | 254 | 112 |    |
| 14 | 0        | 0   | 0   | 0   | 16  | 210 | 255 | 249 | 129 | 0   |    |
| 15 | 0        | 0   | 0   | 16  | 154 | 255 | 255 | 156 | 13  | 0   |    |
| 16 | 0        | 0   | 0   | 0   | 0   | 72  | 250 | 90  | 0   | 0   |    |
| 17 | 0        | 0   | 0   | 0   | 17  | 218 | 255 | 255 | 91  | 0   |    |
| 18 | 0        | 0   | 0   | 0   | 131 | 255 | 255 | 253 | 160 | 16  |    |
| 19 | 255      | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 249 |    |
| 20 | 0        | 106 | 222 | 255 | 255 | 255 | 255 | 255 | 255 | 72  |    |
| 21 | 0        | 0   | 0   | 0   | 67  | 214 | 229 | 91  | 0   | 0   |    |
| 22 | 0        | 0   | 0   | 99  | 229 | 255 | 255 | 255 | 255 | 178 |    |
| 23 | 0        | 68  | 189 | 255 | 255 | 255 | 255 | 255 | 255 | 255 |    |
| 24 | 0        | 0   | 0   | 0   | 131 | 255 | 255 | 222 | 55  | 0   |    |
| 25 | 255<br>≮ | 255 | 255 | 221 | 162 | 162 | 83  | ٥   | ٥   | ٥   |    |

Command History

# Step 2: Separate data into test and test set

# Step 2: Separate data into train and test set

| 200     |   | CIU                                 |
|---------|---|-------------------------------------|
| 367     |   |                                     |
| <br>368 |   |                                     |
| 369     |   | %%                                  |
| 370     | - | X <mark>=</mark> alldigilinear      |
| 371     | - | cv = cvpartition(y, 'holdout', .5); |
| 372     | - | Xtrain = X(cv.training,:);          |
| 373     | - | Ytrain = y(cv.training,1);          |
| 374     | - | Xtest = X(cv.test,:);               |
| 375     | - | Ytest = y(cv.test,1);               |
| 376     |   |                                     |
| 377     |   |                                     |
| 378     |   |                                     |

| Xtest  | double | 5500x256 double       |
|--------|--------|-----------------------|
| Xtrain | double | 5500x256 double       |
| у      | double | 11000x1 double        |
| ylabel | double | [1,2,3,4,5,6,7,8,9,0] |
| ypred  | double | 5500x1 double         |
| Ytest  | double | 5500x1 double         |
| Ytrain | double | 5500x1 double         |
|        |        |                       |

**Classification Tree** 

- Used for multiclass classification.
- It is an iterative process for splitting data into partitions and split them further into branches
- The method based on finding features that splits data.
- We create a model that predicts the label of a target variable by learning decision rules extracted from the data features.



# Build a simple Classification Tree for fail or pass the course

| people | gender | Age<br><40 | Pass<br>or fail |
|--------|--------|------------|-----------------|
| 1      | 1      | 1          | 1               |
| 2      | 1      | 1          | 1               |
| 3      | 1      | 0          | 0               |
| 4      | 1      | 1          | 0               |
| 5      | 0      | 1          | 1               |
| 6      | 0      | 0          | 0               |
| 7      | 0      | 1          | 1               |
| 8      | 0      | 0          | 0               |
|        |        |            |                 |



Age>40=0

Male=0

Test samples: a) male, age>24 b) Female, age

### Features





## Compare predicted and true labels

#### %%

% Train and Predict Using a Single Classification Tree mdl\_ctree = ClassificationTree.fit(Xtrain,Ytrain); ypred = predict(mdl\_ctree,Xtest); Confmat\_ctree = confusionmat(Ytest,ypred);

#### %

%Train and Predict Using Bagged Decision Trees mdl = fitensemble(Xtrain,Ytrain,'bag',200,'tree','type','Classification'); ypred = predict(mdl,Xtest); Confmat\_bag = confusionmat(Ytest,ypred);

File Edit View Insert Tools Desktop Window Help

1 🖆 🛃 🎍 🛃 🛯 🗉 🖌 🗔

| Confusion Matrix: Single Classification Tree |                                           |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|----------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1                                            | 494                                       | 4                                                                                                                                                                         | 7                                                                                                                                                                                                                                                                                                     | 8                                                                                                                                                                                                                                                                                                                                                        | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 2                                            | 3                                         | 484                                                                                                                                                                       | 15                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 3                                            | 14                                        | 11                                                                                                                                                                        | 416                                                                                                                                                                                                                                                                                                   | 20                                                                                                                                                                                                                                                                                                                                                       | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 4                                            | 12                                        | 5                                                                                                                                                                         | 17                                                                                                                                                                                                                                                                                                    | 438                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 5                                            | 7                                         | 12                                                                                                                                                                        | 14                                                                                                                                                                                                                                                                                                    | 6                                                                                                                                                                                                                                                                                                                                                        | 460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 6                                            | 5                                         | 5                                                                                                                                                                         | 14                                                                                                                                                                                                                                                                                                    | 56                                                                                                                                                                                                                                                                                                                                                       | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 7                                            | 8                                         | 10                                                                                                                                                                        | 22                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                        | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 8                                            |                                           | 6                                                                                                                                                                         | 20                                                                                                                                                                                                                                                                                                    | 11                                                                                                                                                                                                                                                                                                                                                       | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 9                                            | 13                                        | 11                                                                                                                                                                        | 47                                                                                                                                                                                                                                                                                                    | 42                                                                                                                                                                                                                                                                                                                                                       | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 10                                           | 2                                         | 4                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                     | 9                                                                                                                                                                                                                                                                                                                                                        | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                                              | 1                                         | 2                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                     | 4<br>F                                                                                                                                                                                                                                                                                                                                                   | 5<br>Predicte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6<br>d Clas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                              | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 1       494         2       3         3       14         4       12         5       7         6       5         7       8         9       13         10       2         1 | Con         1       494       4         2       3       484         3       14       11         4       12       5         5       7       12         6       5       5         7       8       10         8       6         9       13       11         10       2       4         1       2       4 | 1       494       4       7         2       3       484       15         3       14       11       416         4       12       5       17         5       7       12       14         6       5       5       14         7       8       10       22         8       6       20         9       13       11       47         10       2       4       4 | Confusion Matri         1       494       4       7       8         2       3       484       15       2         3       14       11       416       20         4       12       5       17       438         5       7       12       14       6         6       5       5       14       56         7       8       10       22       2         8       6       20       11         9       13       11       47       42         10       2       4       4       9         1       2       3       4 | Confusion Matrix: Sing         1       494       4       7       8       9         2       3       484       15       2       10         3       14       11       416       20       12         4       12       5       17       438       4         5       7       12       14       6       460         6       5       5       14       56       17         7       8       10       22       2       21         8       6       20       11       13         9       13       11       47       42       14         10       2       4       4       9       30         1       2       3       4       5       5 | Confusion Matrix: Single Classing         1       494       4       7       8       9         2       3       484       15       2       10       14         3       14       11       416       20       12       16         4       12       5       17       438       4       26         5       7       12       14       6       460       19         6       5       5       14       56       17       420         7       8       10       22       2       21       9         8       6       20       11       13       2         9       13       11       47       42       14       19         10       2       4       4       9       30       6         1       2       3       4       5       6       6 | Confusion Matrix: Single Classification         1       494       4       7       8       9       17         2       3       484       15       2       10       14       9         3       14       11       416       20       12       16       13         4       12       5       17       438       4       26       5         5       7       12       14       6       460       19       5         6       5       5       14       56       17       420       7         7       8       10       22       2       21       9       467         8       6       20       11       13       2       14         9       13       11       47       42       14       19       6         10       2       4       4       9       30       6       1       1         1       2       3       4       5       6       7       7 | Contusion Matrix: Single Classification I         1       494       4       7       8       9       17       2         2       3       484       15       2       10       14       9       17         3       14       11       416       20       12       16       13       14         4       12       5       17       438       4       26       5       11         5       7       12       14       6       460       19       5       10         6       5       5       14       56       17       420       7       3         7       8       10       22       2       21       9       467         8       6       20       11       13       2       473         9       13       11       47       42       14       19       6       7         10       2       4       4       9       30       6       14       14         1       2       3       4       5       6       7       8 | 1         494         4         7         8         9         17         2         8           2         3         484         15         2         10         14         9         9           3         14         11         416         20         12         16         13         14         29           4         12         5         17         438         4         26         5         11         22           5         7         12         14         6         460         19         5         10         4           6         5         5         14         56         17         420         7         3         15           7         8         10         22         2         21         9         467         11           8         6         20         11         13         2         473         10           9         13         11         47         42         14         19         6         7         365           10         2         4         4         9         30         6         14         17 <tr< td=""></tr<> |  |  |

| File | Edit | View | Insert | Tools | Desktop | Window | Help |  |  |
|------|------|------|--------|-------|---------|--------|------|--|--|
| 1    | 3 🛃  | 9    | ]      | E   🗟 | Ξ       |        |      |  |  |

|            | contration matrix. Ensemble of ofassification frees |     |     |     |     |     |     |     |     |     |     |  |
|------------|-----------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|
|            | 1                                                   | 541 | 2   |     |     |     |     | 5   |     | 2   |     |  |
| True Class | 2                                                   |     | 544 |     |     | 3   |     | 3   |     |     |     |  |
|            | 3                                                   | 2   |     | 524 | 1   | 3   | 1   | 7   | 4   | 5   | 3   |  |
|            | 4                                                   | 1   |     | 8   | 525 |     | 6   | 2   | 2   | 3   | 3   |  |
|            | 5                                                   |     |     | 3   |     | 538 |     | 2   |     | 1   | 6   |  |
|            | 6                                                   | 1   | 1   |     | 12  | 2   | 530 | 2   |     |     | 2   |  |
|            | 7                                                   | 1   | 5   | 3   |     | 3   |     | 538 |     |     |     |  |
|            | 8                                                   |     | 1   |     |     | 4   |     |     | 538 | 2   | 5   |  |
|            | 9                                                   | 1   | 4   | 8   | 6   | 2   | 6   | 2   |     | 506 | 15  |  |
|            | 10                                                  |     | 1   | 1   | 1   | 6   |     |     | 6   | 3   | 532 |  |
|            |                                                     | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  |  |
|            | Predicted Class                                     |     |     |     |     |     |     |     |     |     |     |  |

Confusion Matrix: Ensemble of Classification Trees

# Other examples for decision tree





| File | Edit | View | Insert | Tools | Desktop | Window | Help |
|------|------|------|--------|-------|---------|--------|------|
| 1    | 3 🔒  | 9    | 3   🗖  | 📰   🗟 | Ξ       |        |      |

#### Confusion Matrix: Single Classification Tree



(attributes, measurements, dimensions)

31







Computers in Biology and Medicine Volume 150, November 2022, 106193



### Adaptive tracking algorithm for trajectory analysis of cells and layer-bylayer assessment of motility dynamics

Mohammad Haroon Qureshi a b, Nurhan Ozlu a, Halil Bayraktar C 🙎 🖂

Show more 🗸

+ Add to Mendeley 😪 Share 🍠 Cite

https://doi.org/10.1016/j.compbiomed.2022.106193 7

Get rights and content 🛪

#### Abstract

Tracking biological objects such as cells or subcellular comp with time-lapse microscopy enables us to understand the n about the dynamics of cell behaviors. However, automatic o segmentation and extracting trajectories remain as a rate-li intrinsic challenges of video processing. This paper presents tracking algorithm (Adtari) that automatically finds the opti

