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Correlation of difference genes
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MULTIVARIATE REGRESSION

-y - dependent variable or also called response variable

- X, X,, X,... , X are called independent variables

D S S
or explanatory variables.

. X values can either quantitative or categorical.

Y = constant (a) + B,x,+ Bx,*+ Bx, ... T Bx,

¥



Dependence of cell growth to expression of geneX, geneY
and geneZ

Linear regression model:
¥ ~1+x1+ x2 + X3

Estimated Coefficients:

Estimate SE tStat pValue
(Intercept) 47.153 26.499 1.7794 0.078342
x1 0.28602 0.069679 4.1048 8.4971e-05
X2 -0.0033967 0.0047938 -0.70856 0.48031
x3 -0.3098 0.071258 -4.3476 3.4254e-05

Number of observations: 100, Error degrees of freedom: 96
Root Mean Squared Error: 1.74
R-squared: 0.994, Adjusted R-Squared 0.993

F-statistic vs. constant model: 4.95e+03, p-value = 4.52e-105
>=

Cell growth =47 + 0.28geneX -0.003geneY-0.30gene”Z



Example 2.

Dependence of fuel consumption to car features (weight,

horse power, model year etc.)

Linear regression model:
y~1+x1+ x2 + x3

Estimated Coefficients:

Estimate SE tStat pValue
(Intercept) 47.977 3.8785 12.37 4.8957e-21
x1 = 1.1274 -5.8023 9.8742e-08)
-_§E;2_- -0.042943 0.024313 -1.7663 0.08078
-0.011583 0.19333 -0.059913 0.95236
"

Number of observations: 93, Error degrees of freedom: 89

Root Mean Squared Error: 4.09

R-squared: 0.752, Adjusted R-Squared 0.744
F-statistic vs. constant model: 90, p-value = 7.38e-27

‘b"}l

A one-unit difference in the rating of weight corresponds to a 6.5 point difference in fuel

consumption.



Logistic Regression

If a response variable such as yes/no or success/failure response variables., we

cannot use linear regression models where i1t assumes a normal distribution.

Think about a cancer patient diagnosis whether a patient either have a cancer or

not a cancer

One type of model that can be used 1s called logistic regression. We think in
terms of a binomial model for the two possible values of the response variable

and use one or more explanatory variables to explain the probability of success.

P(Y=1|beta)= exp(b(1)+b(2)x) / 1+exp(b(1)+b(2)x)

X= binary or cont
y= binary

b(1) and b(2) are coefficients



Odds Ratio

Odd ration 1s the ratio of the proportions for binary outcomes.
If p” 1s the proportion for one outcome, then 1 — p” 1s the
proportion for the second outcome:
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P(pass exam)=0.8
P(fall exam)=0.2

odd(pass)=4



Odd ration of being cancer after seeing biomarker changes

P(cancer)=0.83
P(not cancer)=0.17

Odds ration (cancer)=5

the odds for having cancer 1s 5 times

the odds for not having cancer after rna sequencing



If y response variable is discrete

Y= P(¥=0) + P(Y=1)

1.0 o

Logistic function o5 | -
e g
it can be defined as

f(x)= exp(x) / 1+exp(x) R -

f(x) or y values always falls in range between 0 and 1

f(x) Is propabllity values,



Logistic regression
Statistical model for logistic regression
f(x)= exp(x) / 1+exp(x) -
p=exp(x) / 1+exp(x)

'.'c:r_gf : } = fn + fhx

b
1 —p

-

Reverse, divide by exp(x) and rearrange we got

p IS the probability value
beta values are coefficients of the logistic model
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Derivation of log function

f(x)=/exp(x) / 1+exp(X)
Reverse it
1/p=1 + exp(x) / exp(X)

Divide by exp(x)
1/p=1/exp(x) + 1
Rearrage formular

1/p - 1= 1/ exp(x) + 1 —1-p/p= 1/ exp(X)

— p/p-1=exp(x)

Finally, take log of both sides, we got

Log(p/p-1)= b(1)+b(2)x



Example

We will classify the cells as normal (0) and cancerous 1
If gene expression > 65

Given that we have three variables
Exposure to radiation
Acidity
Reactive molecules



Logistic regression and cancer risk estimation

This example involves an experiment to help model the various gene expression levels that
links to cancer occurence. The data include observations of gene expression, patients tested,
and number cancers.
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W  DNA
DNA is a molecule in the cell
nucleus that contains instructions

for making proteins. It Is made of
four different bases: adenine (A), —_— H A N E —
y @ (T), guanine (G), and
ytosine (C). A segment of DNA that AND CANCER
contains the information for making
a protein is called a gene. In the
process of transcription, DNA that

o e ek, HOW GENETIC
messenger RNA (MRNA) I N Fo R MATI o N
oNA CREATES PROTEINS

RNA

MRNA s also made of four
bases: adenine (A), | (U),
inine (G), and cytosine (C)
MRNA moves from the '
nucleus to the cytoplasm Ribosome . 5."’""’"':5 0
where it interacts with e
ribosomes, the protein
factories of the cell. There, Amino acids
through a process called
translation, mRNA is
translated into amino aclds.
A sequence of three mRNA
bases Is called a codon, and
each codon is translated Into
a specific amino acid. There
are 20 different kinds of
amino acids in humans.

PROTEIN

As an mRNA molecule
Is translated, a chain
of amino acids is
formed. The chain
eventually folds into
a three-dimensional
protein, The shape of
a protein determines
Its function. Proteins
have millions of
functions in cells

o

TYPES OF GENETIC MUTATIONS IN CANCER

DNA alterations can affect the structure, function, and amount of the corresponding proteins. All of these effects can
change a cell's behavior from normal to cancerous. For example, a genetic alteration can intensify or eliminate the
protein’s function, which could make cells divide uncontrollably, Many different kinds of genetic mutations are found
in cancer cells, including missense, nonsense, and frameshift mutations and chromosome rearrangements,

MISSENSE MUTATION NONSENSE MUTATION

Original | LEU TRP VAL | Anino Original | | EU TRP VAL |amino
| tescioel  (tryptoghan) (vatine) | Acids | feocirel  [tryptophan [valine] | Acids
A [ NA
Wetstin | gy Amino Mutation | | gy i Amino
lleucine) Acids | flescine) + Acids
A missense mutation Is a change of a single DNA A nonsense mutation Is a change of a single DNA
base that results in a change in the amino acid base that creates a “stop” codon, which terminates
sequence. Sometimes a single amino acid change translation. The result is a shortened protein that may
can greatly alter the protein's function not function or that may have an abnormal function

FRAMESHIFT MUTATION CHROMOSOME REARRANGEMENTS

GO m M oA DNA is wound tightly into structures
original | LEY TRP VAL | Amino ¢ u‘q.:.T-I:.YV::':(:WTf\ hn'\n;;:ir’u..r:.»
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Lets fit with a linear model

roportion
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However there are few problems if we use linear fit:

1) The fit line predicts proportions less than 0 and greater than 1 when proportion geneX level

IS at very high and low levels

2) Proportions are not normally distributed. This contradicts for fitting a simple linear regression

model. It requires normal distribution.
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Lets fit with a polynomial model

S Polynamial model fails
Polynamial model falls
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1) The fit line predicts proportions goes high and low values when proportion geneX level
IS at very high and low levels



Solutions: Logistic regression

Logistic regression is the best model if response variable is binomial. Because it uses a fitting

method that is appropriate for the binomial distribution.
Predicted proportions/probability values are presentin the range from O to 1.
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In matlab we use glmfit function to fit our data to a logistic model
This function returns coefficient estimates for a linear

regression of the responses Y (f(x)) on the

iIndependent variable X



In Matlab,

sloglistic regression

[logitCoef,dev,stats] = glmfit (geneX, [cancer
tested], 'binomial', "loglit");



geneX = [2180 2450 2640 2730 3100 3120 3320 3610 3800
% The number of patients tested at each levels (intervals)
tested = [57 44 37 33 30 22 21 23 19 16 18 21]’;

% The number of cancer patients at each test | stats | logttit | cev %] logitCost
cancer=[12248814 17 17 1517 21]; [ 2x1 double
1 2 3 4 5
1 -12.6748
%logistic regression 2 03867
J
[logitCoef,dev,stats] = gimfit(geneX,[cancer tested], binomial’,'logit’); A

logitFit = gimval(logitCoef,geneX,'logit");

figure(3)
plot(geneX,proportion,'bs’, geneX,logitFit,'r-','markersize’,16);

Glmval Is uses to compute the predicted values for the model

| stats logitFit
1 12%1 double

1 2 3
0.0141
0.0391
0.0782
0.1073
0.3345
0.3519
0.5406
0.7831
0.8827
0.9308
0.9725
0.9871
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glmfint: Logistic model coefficients

| stats logitFit  dev | logitCoef
il 2x1 double
1 2 3 4 5
1 -12.6748
2 03867
J
A
stats logitFit '_ dev | logitCoef

CEl 1x1 struct with 15 fields

Field - Value
H beta [-12.6748:0.3867)
- dfe 10
H sfit 0.5951
His 1
v estdisp 0
HH covb [1.6374,-0.0508:-0.0508,0....
Hise [1.2796:0.0400]
1 coeffcorr [1,-0.9907.-0.9907 1]
HHt [-9.9053:9 6573
Hp [3.9472e-23:4 5T67e-22]
Lij resid 12x 71 double
H residp 12x1 double
H residd 12x1 double
Hj resida 12x 1 double

HH wis

12x 1 double



P(Y=1|beta)= exp(b(1)+b(2)x) / 1+exp(b(1)+b(2)x)

% prediction by using logistic model
% given that patient has an average RNA level from isolated cells
genepredict=40

% what is the risk of having cancer?

% model equation
cancerriskpro=exp(logitCoef(1)+genepredict*logitCoef(2))/(1+exp(logitCoef(1)+genepredi
% probability

disp(cancerriskpro)

figure(3)

plot(geneX, proportion,'bs’, geneX, logitFit,'r-', 'markersize’, 16);
hold on

plot(genepredict,cancerriskpro,'mo’, markersize’, 34);
xlabel('geneX’);

ylabel('Probability');

set(gca, fontsize',18)
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Coefficients are estimated by using a maximum likelihood -
estimation method where coefficients maximizes the
prediction of observed values in the data
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points on a line represents’'the highest points in the
probability distribution

log(odds) = bo+ bix =—12.12+ 0.45x



The effect of coefficients on the shape of logistic model
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Maximum likelthood estimation

Estimation parameters where the probabillity of observed data
IS"maximized.

P(Y=1|coeffcients)= exp(b(1)+b(2)x) / 1+exp(b(1)+b(2)x)

Likelihood function

P(ylbeta(x))= (exp(b(1)+b(2)x)) (y) / 1+exp(b(1)+b(2)x)



Computaion of upper and lower limits of coefficients
b1+ z+SEp1=0.38+£(1.96)(0.04)=X+Y

g o

%Calculate the 95% confidence limits for the coefficients.

LL = stats.beta - 1.96."stats.se; ~15.1828
UL = stats.beta + 1.96.*stats se; 0.3082
%

“%Display the confidence intervals for the coefficients of the model for the relative risk of UL =

% confidence intercal for coefficient
Yolower level

-10.1668

LL 0.4651

Toupperlevel

UL

stats ogitFit dev logitCoef

Bl 1x1 struct with .'IS- fields
Field Value . .
Bow  pzeisozmn Now, odds of having cancer increase
=P (eD1+2*SEb1 ob1-2*SEb1 ) = (0.30 ...46)= (1.36, 1.59)
[+ estdis
i :;ﬁ]’bp :]1.53M,—D.Df:ﬂ5'-ﬂ 05080
[ se [1.2796;0.0400]
1 coeffcorr [1,-0.9907:-0.9907 1] '-:'_.",:_I
HHt [-9.9053:9 6573] ans =
o, Semmemez o exp(LL(2))
i resid 12x7 double .3el0
i :zz:ds -‘z‘ir-‘ double EIp{UL{E}}
[ resida 12x 1 double
O wis 12x T double

ans =

1.5922



log(odds) = bo+ bix =—12.12+ 0.38x

1.1f P =1.2e-22, we can reject the null hypothesis that b1 = 0.

2. We use the estimate b1 = 0.45 and 1ts standard error SE;; = 0.04

to compute the 95% confidence interval for Bi:

b1+ z+SEp = 0.38 £ (1.96)(0.04) = X £ Y

Our estimate of the slope is 0.38and we are 95% confident that the true value 1s between 0.30.and 0.46.

For the odds ratio, the estimate 1s 1.56 and 95% confidence interval 1s
exp(LL(2))
exp(UL(2))

(eD1+2*SEb1 ob1-2*SEb1 ) = (0.30 ...46)= (1.36, 1.59)

The odds of having cancer increase by a factor of 1.56 for each unit

increase in the log concentration of gene expression



Prediction of cancer risk with logistic model

Given than geneX results of patient’is 33 ug/mi, what is the
risk of having disease?

-1 — i i i D —
K0
0.8
£0.6
=
4y
L
o= i
!j
0.2
A
0 g2 . . . |
15 20 25 30 35 40

geneX



In this experiment we examine how well a drug kills cancer cells.

The explanatory variable 1s the log concentration of the drug.

We count each cells whether was either killed or alive.
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drugconc=[3.4,12,20,30,65,280]
cancercells=[100,98,96,96,99,100]
numberkilled=[5,15,55,65,80,90]



log odds cell death

3 7
Log drug concetration



Interpretation of logistic regression results

log(odds) = bo+ bix =—18.64 + 4.25x

1.1f P =0.018, we can reject the null hypothesis that b1 = 0.

2. We use the estimate b1 = 4.25 and its standard error SE;,; = 1.428

to compute the 95% confidence interval for Pi:

b1+ zxSEp = 4.249 £ (1.96)(1.428) =X*Y

Our estimate of the slope 1s 4.25 and we are 95% confident that
the true value 1s between 0.24 and 4.26.

For the odds ratio, the estimate 15.9.48 and 95% confidence interval 1s
D1HSED] b= SERy ) _ ,0.23588 4.26212, = (1.27, 70.96)



Conclusion
The odds of killing cancer cells increase by a factor of 9.5

for each unit increase in the log concentration of drug
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Multiple logistic regression

The data set includes three gene variables: geneA, geneB, and geneC.
We examined the model where geneA was used to predict the odds.
Do the other explanatory variables contain additional information that will give us a better prediction?

We use multiple logistic regression.

log(odds) = bo+ b1 geneA + b2 geneB + b3 geneC
=—14.26 + 0.58 gencA + 0.68 geneB + 3.47 geneC



Machine learning with Matlab

It teaches the computer to think like humans. The data Is
provided and interpret to build a model

Supervised learning Unsupervised learning
« Kmeans
* Hidden markov model
. _ : *  Hieracrhical model
Classification Regression
Nearest Neighor * Linear Reg
Naive Bayes * Logistic Reg

Support Vector machines *  Gaussian model
Random Forest
Neuronal Networks



Machine learning for biology
Alphafold

Article

Highly accurate protein structure prediction
With AlphaFOId AlphaFold Protein Structure Databas Home About FAQs Downloads  API
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. AlphaFold
e Protein Structure Database

mechanistic understanding of their function. Through anenormous experimental
effort'™, the structures of around 100,000 unigue proteins have been determined”, but
this represents asmall fraction of the billions of known protein sequences™”, Structural
coverage is bottlenecked by the months to years of painstaking effort required to
determine asingle protein structure. Accurate computational approaches are needed
to address this gap and to enable large-scale structural bioinformatics. Predicting the 1 f Srat nicr ’ I m
three-dimensional structure that a protein will adopt based solely on its amino acid -
sequence—the structure prediction component of the ‘protein folding problem™—has
been animportant open research problem for more than 50 years®. Despite recent
progress™*, existing methods fall far short of atomic accuracy, especially when no See searchhelp @  Go to online course @
homologous structureis available. Here we provide the first computational method
that can regularly predict protein structures with atomic accuracy evenin cases in which
nosimilar structure is known. We validated an entirely redesigned version of our neural
network-based model, AlphaFold, inthe challenging 14th Critical A of protein
Structure Prediction (CASP14)", demeonstrating accuracy competitive with
experimental structures in amajority of cases and greatly outperforming other
methods. Underpinning the latest version of AlphaFold isa novel machine learning
approach that incorporates physical and biological knowledge about protein structure,
leveraging multi-sequence alignments, into the design of the deep learning algorithm.

Developed by Google DeepMind and EMBL-EBI

Examples: MENFQKVEKIGEGTYGV... Free fatty acid receptor 2 At1858602 Q5VSL9 E. coli

achine learning for self driving cars
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Neural Networks

Apply cutting-edge research to train deep neural networks on problems ranging from
perception to control. Our per-camera networks analyze raw images to perform semantic
segmentation, object detection and monocular depth estimation. Our birds-eye-view
networks take video from all cameras to output the road layout, static infrastructure and 3D
objects directly in the top-down view. Our networks learn from the most complicated and
diverse scenarios in the world, iteratively sourced from our fleet of millions of vehicles in real
time. A full build of Autopilot neural networks involves 48 networks that take 70,000 GPU
hours to train §. Together, they output 1,000 distinct tensors (predictions) at each timestep.

Autonomy Algorithms

Develop the core algorithms that drive the car by creating a high-fidelity representation of
the world and planning trajectories in that space. In order to train the neural networks to
predict such representations, algorithmically create accurate and large-scale ground truth
data by combining information from the car’s sensors across space and time. Use state-of-
the-art techniques to build a robust planning and decision-making system that operates in
complicated real-world situations under uncertainty. Evaluate your algorithms at the scale of
the entire Tesla fleet.




Example: Hand written recognition
Classic problem in machine learning

Problem: Can we teach the computer to read
the hand written digits ?

File Edit View Insert Tools Desktop Window Help
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Can you predict the following hand written digit? Is it 1

or 27
5 .4
; §
e . & 5
.l“{ A g, i : J ﬁ’{;u-_a-:-’ S
: .M'"* ) B
Is i1t 1or 2?
| abels

2 2 2

As we humans, computers also make mistakes!
How to reduce error rate?

1. Use many training samples
2. Use many features



Step 1:
Convert the images into a linear form

o 11000256 double

70 Il 72 73 74 75 76 i 78 79 8
1 0 0 0 39 216 255 245 98 3 0
2 0 0 0 17 255 255 255 255 2h5 255
3 0 0 0 0 0 a7 231 255 255 114
4 0 0 0 0 b 75 238 255 250 222
b 0 0 0 0 1 215 224 40 0 0
B 0 0 0 0 93 255 255 285 231 &3]
7 0 0 64 103 255 255 255 255 2h5 255
g 0 0 0 0 0 54 226 255 255 255
9 0 0 0 0 0 99 255 255 194 9
10 0 0 0 0 I 235 234 16 0 158
1 0 0 0 0 19 163 252 255 229 70
12 0 0 0 0 0 0 212 255 255 255
13 0 0 0 0 0 48 230 255 254 112
14 0 0 0 0 16 210 255 249 129 0
15 0 0 0 16 154 255 255 156 13 0
16 0 0 0 0 0 72 250 90 0 0
17 0 0 0 0 17 218 255 255 91 0
18 0 0 0 0 131 255 255 253 160 16
19 255 255 255 255 255 255 255 255 255 249
20 0 106 222 255 255 255 255 255 2h5 72
21 0 0 0 0 67 214 229 " 0 0
22 0 0 0 99 229 255 255 255 255 178
23 0 6B 189 255 255 255 255 255 255 255
24 0 0 0 0 131 255 255 222 bh 0
2E IR IR IER 271 1R? 1R7 a3 n f f

ol | Carnenand Hickan

Step 2:
Separate data into test and test set



Step 2:
Separate data into train and test set

<

—= 00 =hnd

3267
368 |
3E9 %%
370 - A=alldigilinear
371 - cv = cvpartition(y, 'holdout’, .5);
372 - Atrain = X{cvtraining,:);
373 - Ytrain = y(cv.training,1);
374 - Atest = X(cv.test,)
375 - Ytest = y(cv.test 1)
376
377
378
Atest double 5500256 double
Atrain double 5500256 double
¥ double 1T000xT double
ylabel double [1,2.3,4536.7890]
ypred double 5300xT double
— Ytest double 5500xT double
Ytrain double 5500xT double




Classification Tree

Used for multiclass classification.
It IS an iterative process for splitting data into partitions
and split them further into branches

The method based on finding features that splits data.
We create a model that predicts the label of a target
variable by learning decision rules extracted from the

data features.

X dataset

W

P

TREE #1 TREE #2 TREE #3 TREE #4

CLASS C CLASS D CLASS B CLASS C

MAJORITY VOTING

FINAL CLASS




Build a simple Classification Tree for fail or pass the course

people

gender

Age
<40

Pass
or fall

/ Data\

male female

NN

Age<40

Pro, 1

Label. 1

Test samples: a) male,

age>24

b) Female, age

Age>40 Age<40 Age>40

Pro, 0 Pro, 0.66 Pro, 0

Label,0 Label,1 Label,0

Featurel: Feature 2:
Female=1 Age<40=1
Male=0 Age>40=0



5 11000x256 double

RN R R R

[T R Y PN N ey iy vy i) Fey ey g
3 R T = N = RS R R TR R

Kl
n

Features

70 71 72 73 74 75 76 T 78 79 8l

0 0 0 39 216 255 245 98 3 0
0 ] 0 117, 255 255 255 255 255 255 a
0 ] 0 0 0 27 23 255 255 114
0 0 0 0 5 75 238 255 250 222
0 0 0 0 1 215 224 40 0 0
0 0 0 0 93 255 285 255 231 69
0 0 64 103 255 255 2585 255 255 255
0 0 0 0 0 54 226 255 255 255
0 ] 0 0 0 99 255 255 194 9
0 ] 0 0 7 235 234 16 0 158
0 ] 0 0 19 163 252 255 229 70 e at u re e a u re
0 ] 0 0 0 0 212 255 255 255
0 ] 0 0 0 48 230 255 254 112
0 0 0 0 16 210 255 249 129 0
0 0 0 16 154 255 265 156 13 0
0 0 0 0 0 72 250 90 0 0
0 0 0 0 17 218 2585 255 M 0
0 0 0 0 131 255 2585 253 160 16

255 255 255 255 255 255 255 255 255 249
0 106 222 255 255 255 255 255 255 72
0 ] 0 0 67 214 229 91 0 0
0 ] 0 99 229 255 255 255 255 178
0 65 189 255 255 255 255 255 255 255
0 0 0 0 131 255 255 222 85 0

965 9EE 95K 291 1R2 162 a1 n n n

Feature 2 Feature 2 Feature 2 Feature 2

NN

Feature 3 Feature 3
Pro, 0.89

Label,0 Pro, 0.92
Label,8
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Compare predicted and true labels

%%

% Train and Predict Using a Single Classification Tree
mdl_ctree = ClassificationTree fit(Xtrain Ytrain);

ypred = predict(mdl_ctree Xtest);

Confmat_ctree = confusionmat(Ytest ypred);

%

%Train and Predict Using Bagged Decision Trees

mdl = fitensemble(Xtrain Ytrain,'bag’, 200 'tree’ type' 'Classification’);
ypred = predict(mdl Xtest);

Confmat_bag = confusionmat(Ytest ypred);

File Edit View Inset Tools Desktop Window Help E
Ocdde @ 08| E

Confusion Matrix: Single Classification Tree

File Edit View Inset Tools Desktop Window Help
Odde | @ 0EH & E

Confusion Matrix: Ensemble of Classification Trees

1 17 2 8 1
2 9 9 4
3 13 14 29 o
4 5 1 22 10

5 10 4 13
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True Class
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9] 13 1 47 42 14

0] 2 4 4 9 30

6

1 2 3 4 5 G 7 8 8 10
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Predicted Class



Other examples for decision tree

Samples

(instances, observations) . . . T—
Iris setosa Iris versicolor Iris virginica

Petal
width

Petal
length

Sepal
width

130 | 5.9 3.0 5.0 18 Virginica

B [ N

\\\ Sepal
/ File Edit View Inset Tools Desktop Window Help

Class labels Dﬁﬂ@|@|ﬂ@|%@

Features (targets)
Confusion Matrix: Single Classification Tree

(attributes, measurements, dimensions)

True Class

1 2 3
Predicted Class



Iris setosa Iris versicolor Iris virginica

File Tools Desktop Tree Window Help
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Click to display: ldentity e Magnification: 100% e Pruning lewvel: |0of 4

¥ <1.75 4 >=1.75
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x3 <495 3>=4.95

virginica

virginica

versicolor virginica
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