Introduction to Scientific Computation

Halil Bayraktar Lecture 11 – Deep learning

Machine learning with Matlab

It teaches the computer to think like humans. The data is provided and interpret to build a model

- Naïve Bayes lacksquare
- Support Vector machines lacksquare
- **Random Forest**
- **Neuronal Networks**

- Linear Reg
- Logistic Reg
- Gaussian model

Unsupervised learning

- **K**means
- Hidden markov model
- Hieracrhical model •

Regression

- It is used to predict continuous values
- Linear
- Logistic models
- Examples,
- Predict if a person have a risk of disease
- The price of an apartment
- The expression levels of a protein

Classification

- Used to predict the label of given data,
- Single-class or multi-class models
- What is the label of a given handwritten number?
- Is the good healthy or not?
- Dou you get a low and high grade?

Machine learning for biology Alphafold

Article		← C 🗅 https://www.alphafold.ebi.ac.uk A ^N 🗔 ☆ 🖾 ଓ I Ф 🎓 🕲 😵 …					
Highly accurate protein structure prediction with AlphaFold		AlphaFold Protein Structure Database Home About FAQs Downloads API					
https://doi.org/10.1038/s41586-021-03819-2 Received: 11 May 2021 Accepted: 12 July 2021 Published online: 15 July 2021 Open access Check for updates	John Jumper ^{1,415]} , Richard Evans ^{1,4} , Alexander Pritzel ^{1,4} , Tim Green ^{1,4} , Michael Figurnov ^{1,4} , Olaf Ronneberger ^{1,4} , Kathryn Tunyasuvunakool ^{1,4} , Russ Bates ^{1,4} , Augustin Židek ^{1,4} , Anna Potapenko ^{1,4} , Alex Bridgland ^{1,4} , Clemens Meyer ^{1,4} , Simon A. A. Kohl ^{1,4} , Andrew J. Ballard ^{1,4} , Andrew Cowie ^{1,4} , Bernardino Romera-Paredes ^{1,4} , Staliasu Nikolov ^{1,4} , Rishub Jain ^{1,4} , Jonas Adler ¹ , Trevor Back ¹ , Stig Petersen ¹ , David Reiman ¹ , Ellen Clancy ¹ , Michal Zielinsk ¹ , Martin Steinegger ^{2,3} , Michalina Pacholska ¹ , Tamas Berghammer ¹ , Sebastian Bodenstein ¹ , David Silver ¹ , Oriol Vinyals ¹ , Andrew W. Senior ¹ , Koray Kavukcuoglu ¹ , Pushmeet Kohli ¹ & Demis Hassabis ^{1,415} Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. Through an enormous experimental effort ^{1,4} , the structures of around 100,000 unique proteins have been determine ⁴ , but this represents a small fraction of the billions of known protein sequences ^{4,5} . Structural coverage is bottlenecked by the months to years of painstaking effort required to determine a single protein structure. Accurate computational approaches are needed to address this gap and to enable large-scale structural bioinformatics. Predicting the three-dimensional structure that a protein will adopt based solely on its amino acid sequence—the structure prediction component of the 'protein folding problem ⁶ —has been an important open research problem for more than 50 years ⁹ . Despite recent progress ¹⁰⁻¹⁴ , existing methods fall far short of atomic accuracy, especially when no homologous structure is available. Here we provide the first computational method	AlphaFold Developed by Google DeepMind and EMBL-EBI Search for protein, gene, UniProt accession or organism or sequence search University Tere fatty acid receptor 2 Algs602 Osto anime course					
	no similar structure is known. We validated an entirely redesigned version of our neural network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein Structure Prediction (CASP14) ⁵¹ , demonstrating accuracy competitive with experimental structures in a majority of cases and greatly outperforming other methods. Underpinning the latest version of AlphaFold is a novel machine learning approach that incorporates physical and biological knowledge about protein structure, leveraging multi-sequence alignments, into the design of the deep learning algorithm.						

Machine learning for self driving cars

\leftarrow C $\textcircled{https://www.tesla.com/Al$

Neural Networks

Apply cutting-edge research to train deep neural networks on problems ranging from perception to control. Our per-camera networks analyze raw images to perform semantic segmentation, object detection and monocular depth estimation. Our birds-eye-view networks take video from all cameras to output the road layout, static infrastructure and 3D objects directly in the top-down view. Our networks learn from the most complicated and diverse scenarios in the world, iteratively sourced from our fleet of millions of vehicles in real time. A full build of Autopilot neural networks involves 48 networks that take 70,000 GPU hours to train . Together, they output 1,000 distinct tensors (predictions) at each timestep.

B ∅ A G ☆ A G \% A

Autonomy Algorithms

Develop the core algorithms that drive the car by creating a high-fidelity representation of the world and planning trajectories in that space. In order to train the neural networks to predict such representations, algorithmically create accurate and large-scale ground truth data by combining information from the car's sensors across space and time. Use state-of-the-art techniques to build a robust planning and decision-making system that operates in complicated real-world situations under uncertainty. Evaluate your algorithms at the scale of the entire Tesla fleet.

Example: Hand written recognition Classic problem in machine learning Problem: Can we teach the computer to read the hand written digits ?

1				
5			%%	
5			% Randomly pick the images and their labels	
7	-	F	for ii = 1:6	
3	-		subplot(2,3,ii)	
Э	-		rand_num = randperm(11000,1);	
)	-		imshow(alldigitaldata{rand_num,1},[])	
L	-		title((y(rand_num)),'FontSize',20)	
2	-		axis off	
3	-	L.	end	
1				
5				
5			0/ 0/	
/				
3			% lets pick the selected values	
2			% here we find the index of selelected values	
2	_		selection der = 0	
L	_		[r,c,logic]=find(y==selectnumber)	
-			for i = 1:0	
2		T	subplot(3.3 i)	
*			selectnum=randi([1 1100] 1 1)	
5	_		selection_rand([1,1100],1,1)	
7	_		image(reshape(X(r(selectnum) ·) 16 16))	
2			inage(reshape(/(((selection)),.), io, io))	
à	_		title(string(selectnumber) 'FontSize' 20)	
5	_		axis off	
1	_		end	
2				
3				
2				

承 Figure 1

File Edit View Insert Tools Desktop Window Help

1 4 🗉 🛛 😓 🖉

– 🗆 🗙

8

Can you predict the following hand written digit? Is it 1 or 2?

As we humans, computers also make mistakes! How to reduce error rate?

- 1. Use many training samples
- 2. Use many features

Step 1: Convert the images into a linear form

11000x256 double

	70	71	72	73	74	75	76	77	78	79	8(
1	0	0	0	39	216	255	245	98	3	0	
2	0	0	0	117	255	255	255	255	255	255	
3	0	0	0	0	0	27	231	255	255	114	
4	0	0	0	0	5	75	238	255	250	222	
5	0	0	0	0	11	215	224	40	0	0	
6	0	0	0	0	93	255	255	255	231	69	
7	0	0	64	103	255	255	255	255	255	255	
8	0	0	0	0	0	54	226	255	255	255	
9	0	0	0	0	0	99	255	255	194	9	
10	0	0	0	0	71	235	234	16	0	158	
11	0	0	0	0	19	163	252	255	229	70	
12	0	0	0	0	0	0	212	255	255	255	
13	0	0	0	0	0	48	230	255	254	112	
14	0	0	0	0	16	210	255	249	129	0	
15	0	0	0	16	154	255	255	156	13	0	
16	0	0	0	0	0	72	250	90	0	0	
17	0	0	0	0	17	218	255	255	91	0	
18	0	0	0	0	131	255	255	253	160	16	
19	255	255	255	255	255	255	255	255	255	249	
20	0	106	222	255	255	255	255	255	255	72	
21	0	0	0	0	67	214	229	91	0	0	
22	0	0	0	99	229	255	255	255	255	178	
23	0	68	189	255	255	255	255	255	255	255	
24	0	0	0	0	131	255	255	222	55	0	
25	255 <	255	255	221	162	162	83	٥	٥	n	

%%

alldigilinear=zeros(11000,256) for i=1:11000; alldigilinear(i,1:256) =reshape(alldigitaldata{i,:},1,256);

end

%%

X=alldigilinear cv = cvpartition(y, 'holdout', .5); Xtrain = X(cv.training,:); Ytrain = y(cv.training,1); Xtest = X(cv.test,:); Ytest = y(cv.test,1);

Command Histor

Step 2: Separate data into test and test set

Step 2: Separate data into train and test set

200		CIU
367		
 368		
369		%%
370	-	X <mark>=</mark> alldigilinear
371	-	cv = cvpartition(y, 'holdout', .5);
372	-	Xtrain = X(cv.training,:);
373	-	Ytrain = y(cv.training,1);
374	-	Xtest = X(cv.test,:);
375	-	Ytest = y(cv.test,1);
376		
377		
378		

Xtest	double	5500x256 double
Xtrain	double	5500x256 double
у	double	11000x1 double
ylabel	double	[1,2,3,4,5,6,7,8,9,0]
ypred	double	5500x1 double
Ytest	double	5500x1 double
Ytrain	double	5500x1 double

Classification Tree

- Used for multiclass classification.
- It is an iterative process for splitting data into partitions and split them further into branches
- The method based on finding features that splits data.
- We create a model that predicts the label of a target variable by learning decision rules extracted from the data features.

Build a simple Classification Tree for fail or pass the course

people	gender	Age <40	Pass or fail
1	1	1	1
2	1	1	1
3	1	0	0
4	1	1	0
5	0	1	1
6	0	0	0
7	0	1	1
8	0	0	0

Age>40=0

Male=0

Test samples: a) male, age>24 b) Female, age

Features

Compare predicted and true labels

%%

% Train and Predict Using a Single Classification Tree mdl_ctree = ClassificationTree.fit(Xtrain,Ytrain); ypred = predict(mdl_ctree,Xtest); Confmat_ctree = confusionmat(Ytest,ypred);

%

%Train and Predict Using Bagged Decision Trees

mdl = fitensemble(Xtrain,Ytrain,'bag',200,'tree','type','Classification');
ypred = predict(mdl,Xtest);
Confmat_bag = confusionmat(Ytest,ypred);

File Edit View Insert Tools Desktop Window Help

🎦 🧉 🛃 🍓 🗔 🛯 🗉 🛛 😓 🔳

			Co	nfusion	n Matri	ix: Sing	gle Cla	ssifica	ation T	ree	
	1	494	4	7	8	9		17	2	8	1
	2	3	484	15	2	10	14	9		9	4
	3	14	11	416	20	12	16	13	14	29	5
	4	12	5	17	438	4	26	5	11	22	10
Class	5	7	12	14	6	460	19	5	10	4	13
True	6	5	5	14	56	17	420	7	3	15	8
	7	8	10	22	2	21	9	467		11	
	8		6	20	11	13	2		473	10	15
	9	13	11	47	42	14	19	6	7	365	26
	10	2	4	4	9	30	6		14	17	464
		1	2	3	4	5 Prodicto	6 d Close	7	8	9	10
					г	redicte	u olas	5			

File	Edit	View	Insert	Tools	Desktop	Window	Help	
1	š 🛃	è 2	3 🗖	E 🗟				

			Jointus			insenn		Jassi	icatio	THEE	.
	1	541	2					5		2	
	2		544			3		3			
	3	2		524	1	3	1	7	4	5	3
	4	1		8	525		6	2	2	3	3
Class	5			3		538		2		1	6
True	6	1	1		12	2	530	2			2
	7	1	5	3		3		538			
	8		1			4			538	2	5
	9	1	4	8	6	2	6	2		506	15
	10		1	1	1	6			6	3	532
		1	2	3	4	5 Prodicto	6	7	8	9	10
					P	redicte	u Cias	5			

Confusion Matrix: Ensemble of Classification Trees

Other examples for decision tree

- A decision tree is a set of simple rules, for example if the sepal length is less than 5.00, classify the specimen as setosa.
- Decision trees are nonparametric model because they do not require any assumptions about the distribution of the variables in each class.

Iris setosa

Iris versicolor

Iris virginica

	1	2	3	4	5	6	7	8	
1	5 1000	3 5000	1 4000		5	0	1	0	
2	4 9000	3	1.4000	0.2000					
3	4,7000	3,2000	1.3000	0.2000					
4	4.6000	3,1000	1,5000	0.2000					
5	5	3.6000	1.4000	0.2000					
6	5.4000	3.9000	1.7000	0.4000					
7	4.6000	3.4000	1.4000	0.3000					
8	5	3.4000	1.5000	0.2000					
9	4.4000	2.9000	1.4000	0.2000					
10	4.9000	3.1000	1.5000	0.1000					
11	5.4000	3.7000	1.5000	0.2000					
12	4.8000	3.4000	1.6000	0.2000					
13	4.8000	3	1.4000	0.1000					
14	4.3000	3	1.1000	0.1000					
15	5.8000	4	1.2000	0.2000					
16	5.7000	4.4000	1.5000	0.4000					
17	5.4000	3.9000	1.3000	0.4000					
18	5.1000	3.5000	1.4000	0.3000					
19	5.7000	3.8000	1.7000	0.3000					
20	5.1000	3.8000	1.5000	0.3000					
21	5.4000	3.4000	1.7000	0.2000					
22	5.1000	3.7000	1.5000	0.4000					
23	4.6000	3.6000	1	0.2000					
24	5.1000	3.3000	1.7000	0.5000					
25	4.8000	3.4000	1.9000	0.2000					
26	5	3	1.6000	0.2000					
27	5	3.4000	1.6000	0.4000					
20	F 2000	2 5000	1 5000	0 2000					

ĸ	1	Variables - s	pecies				
		species 🔅	c				
	{}	150x1 <u>cell</u>					
		1	2	3	4	5	
	1	setosa					
	2	setosa					
-	3	setosa					
	4	setosa					
	5	setosa					
	6	setosa					
	7	setosa					
	8	setosa					
=	9	setosa					
-	10	setosa					
	11	setosa					
	12	setosa					
	13	setosa					
	14	setosa					
	15	setosa					
	16	setosa					
	17	setosa					
	18	setosa					
	19	setosa					
	20	setosa					
	21	setosa					
Ξ	22	setosa					
	23	setosa					
	24	setosa					
	25	setosa					
	26	setosa					
	27	setosa					
	00						

nen (on ee, mode , graph)

%%

cv = cvpartition(species, 'holdout', .50); Xmeastrain = meas(cv.training,:); Ymeastrain = species(cv.training,1); Xmeastest = meas(cv.test,:); Ymeastest = species(cv.test,1);

mdl_ctree = ClassificationTree.fit(Xmeastrain,Ymeastrain); ypred = predict(mdl_ctree,Xmeastest); Confmat ctree = confusionmat(Ymeastest, ypred);

%Train and Predict Using Bagged Decision Trees

mdl = fitensemble(Xmeastrain, Ymeastrain, 'bag', 200, 'tree', 'type', 'Classification'); ypred = predict(mdl,Xmeastest); Confmat_bag = confusionmat(Ymeastest, ypred);

figure(10) confusionchart(Confmat_ctree) title('Confusion Matrix: Single Classification Tree') figure(11) confusionchart(Confmat_bag) title('Confusion Matrix: Ensemble of Classification Trees')

Computers in Biology and Medicine Volume 150, November 2022, 106193

Adaptive tracking algorithm for trajectory analysis of cells and layer-bylayer assessment of motility dynamics

Mohammad Haroon Qureshi a b, Nurhan Ozlu a, Halil Bayraktar C 🙎 🖂

Show more 🗸

+ Add to Mendeley 😪 Share 🍠 Cite

https://doi.org/10.1016/j.compbiomed.2022.106193 7

Get rights and content 🛪

Abstract

Tracking biological objects such as cells or subcellular comp with time-lapse microscopy enables us to understand the n about the dynamics of cell behaviors. However, automatic o segmentation and extracting trajectories remain as a rate-li intrinsic challenges of video processing. This paper presents tracking algorithm (Adtari) that automatically finds the opti

Deep learning

- Based on the principles of learning
- Composed of linked neurons
- Includes input, hidden and output layers

Represented as network diagrams

Applications

- Medical diagnosis (flu, cold, bacterial)
- Fraud detection in banking (valid or fraud transactions)
- Image classification (cat, dog, cow,...)
- Drug discovery (inhibitor or not)
- Chemical synthesis (route selection or organic synthesis)
- Genome analysis (cancer risk or not)
- Spam filter (spam email or normal)
- Language models, (What does it say?)

- Binary or Boolean classification when labels=2
- Multi-class classification when label>2

Another example, Is it cat or not?

How do we learn objects at early age?

- Learning theory states that as we learn things it strengths the link between neurons.
- Deep learning was inspired from this principle that help us to learn things around us.

Covert 2d Image to 1d Array

Used to convert 2D to 1D array

• y = reshape(repmat(ylabel,1100,1),11000,1);

Example

How do you learn if the object on the Picture is cat?

The connection between the 1st neuron in the input layer and 1st layer in hidden layer gets stronger

- Observing more cats strengten the connections between some neurons.
- The strength in deep learning are represented by weigths (w). When the neuron in the hidden layer receives enough input

Adding more features to DL model

Example:

%%
im = imread("peppers.png");
figure(1)
imshow(im)
%%
X = single(im);
scores = predict(net,X);
[label,score] = scores2label(scores,classNames);
%%
for i=1:1000
if classNames(i,1)=='lion'
disp(i)
end
end
%%
figure(1)
imshow(cdata)
figure(2)
imshow(cdata_1)
%%
cdata1 = single(cdata);
cdata2 = single(cdata_1);
%%
scores = predict(net,cdata2);
[label,score] = scores2label(scores,classNames);
disp(label)
disp(score)
%%

tabby, 0.18962

Pretrained networks

60

Load Pretrained Neural Networks

To load the SqueezeNet neural network, use the imagePretrainedNetwork function.

[net,classNames] = imagePretrainedNetwork;

For other neural networks, specify the model using the first argument of the imagePretrainedNetwork function. If you do not have the required support package for the network, the function provides a link to download it. Alternatively, you can download the pretrained neural networks from the Add-On Explorer.

This table lists the available pretrained neural networks trained on ImageNet and some of their properties. The neural network depth is defined as the largest number of sequential convolutional or fully connected layers on a path from the network input to the network depth is defined as the largest number of sequential convolutional or fully connected layers on a path from the network input to the network depth is defined as the largest number of sequential convolutional or fully connected layers on a path from the network input to the network depth is defined as the largest number of sequential convolutional or fully connected layers on a path from the network input to the network depth is defined as the largest number of sequential convolutional or fully connected layers on a path from the network input to the network depth is defined as the largest number of sequential convolutional or fully connected layers on a path from the network input to the network depth is defined as the largest number of sequential convolutional or fully connected layers on a path from the network input to the network depth is defined as the largest number of sequential convolutional or fully connected layers on a path from the network input to the network depth is defined as the largest number of sequential convolutional or fully connected layers on a path from the network input to the network depth is defined as the largest number of sequential convolutional or fully connected layers on a path from the network input to the network depth is defined as the largest number of sequential convolutional or fully connected layers on a path from the network input to the network depth is defined as the largest number of sequential convolutional or fully connected layers on a path from the network depth is defined as the largest number of sequential convolutional or fully connected layers on a path from the network depth is defined as the largest number of sequences.

imagePretrainedNetwork Model Name Argument	Neural Network Name	Depth	Size	Parameters (Millions)	Image Input Size	Required Support Package
"squeezenet"	SqueezeNet [2]	18	5.2 MB	1.24	227-by-227	None
"googlenet"	GoogLeNet [3][4]	22	27 MB	7.0	224-by-224	Deep Learning Toolbox Model for
"googlenet-places365"						GoogLeNet Network
"inceptionv3"	Inception-v3 [5]	48	89 MB	23.9	299-by-299	Deep Learning Toolbox Model for Inception-v3 Network
"densenet201"	DenseNet-201 [6]	201	77 MB	20.0	224-by-224	Deep Learning Toolbox Model for DenseNet-201 Network
"mobilenetv2"	MobileNet-v2 [7]	53	13 MB	3.5	224-by-224	Deep Learning Toolbox Model for MobileNet-v2 Network
"resnet18"	ResNet-18 [8]	18	44 MB	11.7	224-by-224	Deep Learning Toolbox Model for ResNet-18 Network
"resnet50"	ResNet-50 [8]	50	96 MB	25.6	224-by-224	Deep Learning Toolbox Model for ResNet-50 Network
"resnet101"	ResNet-101 [8]	101	167 MB	44.6	224-by-224	Deep Learning Toolbox Model for ResNet-101 Network
"xception"	Xception [9]	71	85 MB	22.9	299-by-299	Deep Learning Toolbox Model for Xception Network
"inceptionresnetv2"	Inception-ResNet-v2 [10]	164	209 MB	55.9	299-by-299	Deep Learning Toolbox Model for Inception-ResNet-v2 Network
"shufflenet"	ShuffleNet [11]	50	5.4 MB	1.4	224-by-224	Deep Learning Toolbox Model for ShuffleNet Network
"nasnetmobile"	NASNet-Mobile [12]	*	20 MB	5.3	224-by-224	Deep Learning Toolbox Model for NASNet-Mobile Network
"nasnetlarge"	NASNet-Large [12]	*	332 MB	88.9	331-by-331	Deep Learning Toolbox Model for NASNet-Large Network
"darknet19"	DarkNet-19 [13]	19	78 MB	20.8	256-by-256	Deep Learning Toolbox Model for DarkNet-19 Network
"darknet53"	DarkNet-53 [13]	53	155 MB	41.6	256-by-256	Deep Learning Toolbox Model for DarkNet-53 Network
"efficientnetb0"	EfficientNet-b0 [14]	82	20 MB	5.3	224-by-224	Deep Learning Toolbox Model for EfficientNet-b0 Network
"alexnet"	AlexNet [15]	8	227 MB	61.0	227-by-227	Deep Learning Toolbox Model for AlexNet Network

Explore other pretrained neural networks in Deep Network Designer by clicking New.

If you need to download a neural network, pause on the desired neural network and click Install to open the Add-On Explorer.